Drink water before, during, and after your exercise activity! i would rlly appreciate brainliest:D
Answer:
R1 = 4.8Ω
Explanation:
The loop circuit has an initial voltage of V = IR
I = 2 A , R1 = R
V = 2R1
with the current reduced to 1.5A with an additional 1.6Ω resistor
the total resistance of the circuit is 1.6 + R1
the voltage of the two scenarios has to be equal , since the same voltage flows through the circuit
therefore V = 2R1
from Ohms law V = IR
2R1= 1.5 (1.6 + R1)
2R1 = 2.4 + 1.5R1
collecting like terms
2R1 - 1.5R1 = 2.4
0.5R1 = 2.4
R1 = 
R1 = 4.8Ω
Answer:
maximum speed of the bananas is 18.8183 m/s
Explanation:
Given data
amplitude A = 23.195 cm
spring constant K = 15.2676 N/m
mass of the bananas m = 56.9816 kg
to find out
maximum speed of the bananas
solution
we know that radial oscillation frequency formula that is = √(K/A)
radial oscillation frequency = √(15.2676/23.195)
radial oscillation frequency is 0.8113125 rad/s
so maximum speed of the bananas = radial oscillation frequency × amplitude
maximum speed of the bananas = 0.8113125 × 23.195
maximum speed of the bananas is 18.8183 m/s
Distance traveled by him = circumference of that circular path = 2πr = 2π(3.5)
= 7π = 7×3.14 = 21.98 m
time = 8.9 s [ Given ]
Now, Average speed = distance / time
s = 21.98 / 8.9
s = 2.46 m/s
Hope this helps!