<u>Answer:</u>
The amount of the lighted side of the moon you can see is the same during "how much of the sunlit side of the moon faces Earth".
<u>Explanation:</u>
The Moon is in sequential rotation with Earth, and thus displays the Sun, the close side, always on the same side. Thanks to libration, Earth can display slightly greater than half (nearly 59 per cent) of the entire lunar surface.
The side of the Moon facing Earth is considered the near side, and the far side is called the reverse. The far side is often referred to as the "dark side" inaccurately but it is actually highlighted as often as the near side: once every 29.5 Earth days. During the New Moon the near side becomes blurred.
Answer:
Fx= 50.0 Pounds : Components of the force along the x-axis
Fy= 86.6 Pounds : Component of the force along the y-axis
Explanation:
Conceptual Analysis
To find the components (Fx, Fy) of the total force (F), we apply the trigonometric concepts for a right triangle, where the perpendicular sides of the triangle are the components (Fx, Fy) of the force (F), the hypotenuse (h) is the magnitude of the total force F and β is the angle that forms the horizontal component with the hypotenuse.
Formulas
cos β : x/h : x: side adjacent to the β angle h: hypotenuse (1)
sin β = y/h : y: side opposite to the β angle h: hypotenuse (2)
Known Data
Known data
F= 1.00 * 10² pounds = 100 pounds : magnitude of total force
β = 60.0° to the x-axis. : Angle that forms the force with the x-axis
Problem Development
We apply the formula 1 to calculate horizontal component (Fx)
cos β :Fx/F
Fx= F cosβ = 100*cos 60° = 50.0 Pounds
We apply the formula 2 to calculate vertical component (Fy)
sin β = Fy/F
Fy= F sinβ = 100*sin 60° = 86.6 Pounds
Answer:
Explanation:
This means that the ratio of the speed of the incident beam of light in a vacuum to the speed of light in the glass is 1.5
True because once it builds up enough + or - charges