Answer:
22m/s
Explanation:
lowest part on the graph (closest to x-axis)
Answer:
The velocity of the fish hitting the ground is , v = 45.795 m/s
Explanation:
Given data,
The mass of the fish, m = 5 kg
The height of the bird from the surface, h = 107 m
Using the III equation of motion,
v² = u² + 2gs
<em> v = √(u² + 2gs)</em>
Substituting the values,
v = √(0² + 2 x 9.8 x 107)
= 45.795 m/s
Hence, the velocity of the fish hitting the ground is, v = 45.795 m/s
Answer:
500 N
Explanation:
Since the work done on the spring W = Fx where F = force applied and x = compression length = 0.170 m (since the spring will be compressed its full length when the force is applied)
Since W = 85.0 J and we need to find F,
F = W/x
= 85.0 J/0.170 m
= 500 N
So, the magnitude of force must you apply to hold the platform stationary at the final distance given above is 500 N.
Answer:
1500 per second.
Explanation:
vibrations = 1.5 kilohertz
1.5×1000=1500
the answer is 1500 per second.
Given a = 10 cm/s²
u = 0 cm/s
v = 50 cm/s
we know that
v²=u²+2aS
2500=2×10×S
2500÷20 = S
S= 125 cm
The ramp is 125 cm