As we sit in a chair, Action force will be only in one direction and that direction would be downward only.
In short, Your Answer would be Option A
Hope this helps!
Answer:

Explanation:
First of all, we need to calculate the total energy supplied to the calorimeter.
We know that:
V = 3.6 V is the voltage applied
I = 2.6 A is the current
So, the power delivered is

Then, this power is delivered for a time of
t = 350 s
Therefore, the energy supplied is

Finally, the change in temperature of an object is related to the energy supplied by

where in this problem:
E = 3276 J is the energy supplied
C is the heat capacity of the object
is the change in temperature
Solving for C, we find:

Answer:
Re = 1 10⁴
Explanation:
Reynolds number is
Re = ρ v D /μ
The units of each term are
ρ = [kg / m³]
v = [m / s]
D = [m]
μ = [Pa s]
The pressure
Pa = [N / m²] = [Kg m / s²] 1 / [m²] = [kg / m s²]
μ = [Pa s] = [kg / m s²] [s] = [kg / m s]
We substitute the units in the equation
Re = [kg / m³] [m / s] [m] / [kg / m s]
Re = [kg / m s] / [m s / kg]
RE = [ ]
Reynolds number is a scalar
Let's evaluate for the given point
Where the data for methane are:
viscosity μ = 11.2 10⁻⁶ Pa s
the density ρ = 0.656 kg / m³
D = 2 in (2.54 10⁻² m / 1 in) = 5.08 10⁻² m
Re = 0.656 4 2 5.08 10⁻² /11.2 10⁻⁶
Re = 1.19 10⁴
Answer:
C) 100 joules
Explanation:
The kinetic energy of an object is given by:

where m is the mass of the object and v its speed.
In this problem, we have an object of mass m = 50 kg and v = 2 m/s, so by using the formula we can find its kinetic energy:

Answer:
The fundamental wavelength of the vibrating string is 1.7 m.
Explanation:
We have,
Velocity of wave on a guitar string is 344 m/s
Length of the guitar string is 85 cm or 0.85 m
It is required to find the fundamental wavelength of the vibrating string. The fundamental frequency on the string is given by :

Now fundamental wavelength is :

So, the fundamental wavelength of the vibrating string is 1.7 m.