Answer:
10628.87 J
Explanation:
We are given that
Force applied =F=5592 N

Displacement=D=3.79 m
We have to find the work done in sliding the piano up the plank at a slow constant rate.
Work done=
The perpendicular component of force=
Work done =
Hence, the work done in sliding the piano up the plank at a slow constant rate=10628.87 J
Answer:
vi) Double the current in the wire, and double the number of turns in the 20-cm long solenoid
Explanation:
The magnetic field inside the solenoid and the current flowing in the coil of solenoid are related to each other by the following equation
B₀=μ₀nI₀
Where,
B₀ is the magnetic field in the middle of solenoid
n is the number of turns in the coil of solenoid
I₀ is the current flowing in the coil of solenoid
In the above equation, as μ₀ is a constant so the magnetic field will be directly proportional to the number of turns multiplied by the current. So, changing the radius of the coil or length of the coil will have no effect on the magnetic field.
As we have to increase the magnetic field by 4 times, we need to double the current as well as the number of turns as mentioned in the option vi.
We have all the charges for q1, q2, and q3.
Since k = 8.988x10^2, and N=m^2/c^2
F(1) = F (2on1) + F (3on1)
F(2on1) = k |q1 q2| / r(the distance between the two)^2
k^ | 3x10^-6 x -5 x 10^-6 | / (.2m)^2
F(2on1) = 3.37 N
Since F1 is 7N,
F(1) = F (2on1) + F (3on1)
7N = 3.37 N + F (3on1)
Since it wil be going in the negative direction,
-7N = 3.37 N + F (3on1)
F(3on1) = -10.37N
F(3on1) = k |q1 q3| / r(the distance between the two)^2
r^2 x F(3on1) = k |q1 q3|
r = sqrt of k |q1 q3| / F(3on1)
= .144 m (distance between q1 and q3)
0 - .144m
So it's located in -.144m
Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.
Answer:
a

b

c
Explanation:
From the question we are told that
The angle of incidence is 
The refractive index of water is 
Generally Snell's law is mathematically represented as

Here
is the refractive index of air with value 
is the angle of refraction
So
![\theta _2 = sin^{-1}[\frac{n_1 * sin(\theta _1)}{n_2} ]](https://tex.z-dn.net/?f=%5Ctheta%20_2%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7Bn_1%20%2A%20sin%28%5Ctheta%20_1%29%7D%7Bn_2%7D%20%5D)
=> ![\theta _2 = sin^{-1}[\frac{1.3 * sin(10)}{1} ]](https://tex.z-dn.net/?f=%5Ctheta%20_2%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7B1.3%20%2A%20sin%2810%29%7D%7B1%7D%20%5D)
=> 
Given that the angle should not be greater than
then the angle of incidence will be
![\theta _1 = sin^{-1}[\frac{n_2 * sin(\theta _2)}{n_1} ]](https://tex.z-dn.net/?f=%5Ctheta%20_1%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7Bn_2%20%2A%20sin%28%5Ctheta%20_2%29%7D%7Bn_1%7D%20%5D)
=> ![\theta _1 = sin^{-1}[\frac{1 * sin(45)}{1.3} ]](https://tex.z-dn.net/?f=%5Ctheta%20_1%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7B1%20%2A%20sin%2845%29%7D%7B1.3%7D%20%5D)
=> 
Generally for critical angle is mathematically represented as
![\theta_c = sin^{-1}[\frac{n_2}{n_1} ]](https://tex.z-dn.net/?f=%5Ctheta_c%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7Bn_2%7D%7Bn_1%7D%20%5D)
=>
=>
Complete Question
Suppose you have three identical metal spheres, A, B, and C. Initially sphere A carries a charge q and the others are uncharged. Sphere A is brought in contact with sphere B, and then the two are separated. Spheres CC and BB are then brought in contact and separated. Finally spheres AA and CC are brought in contact and then separated. What is the final charge on the sphere B, in terms of q?
a. 3/8q
b. 1/4q
c. 3/4q
d. q
e. 5/8q
f. 1/3q
g.1/2q
h. 0
Answer:
The correct option is b
Explanation:
From the question we are told that
The charge carried by A is q C
The charge carried by B is 0 C
The charge carried by C is 0 C
When A and B are brought close and then separated the charge carried by A and B is mathematically evaluated as

When C and B are brought close and then separated the charge carried by C and B is mathematically evaluated as

When C and A are brought close and then separated the charge carried by C and A is mathematically evaluated as

Looking at these calculation we can see that the charge carried by B is
