1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lady_Fox [76]
3 years ago
9

You design toys for a toy company. Your boss wants you to hook up the lights in the toy car you are working on in the cheapest w

ay possible, without consideration of the quality of the toy. Which circuit should you use if you want to save money by using fewer parts? Why would this circuit be cheaper?
Physics
2 answers:
bezimeni [28]3 years ago
7 0

Answer:

put the car on fire

Explanation:

if you put it on fire you would have a lot of light now

RoseWind [281]3 years ago
4 0
Put the car on the fire
You might be interested in
Please help me solve all of them ( a, b, c and d ) thankiew !! <br> I’m also kind of in a rush
Sergio039 [100]

Answer:

a-

V= IR

9V = I ×( 12+6)

I = 9/ 18 A = 0.5 A

b

V=IR

240 = 6 A ×( 20 + R)

40 = 20 + R

R = 20 ohm

c

resultant resistance of the 2 parallel resistances= Ro

1/Ro = 1/ 5 + 1/ 20

1/Ro =( 20+5)/100

= 1/Ro = 1/4

Ro= 4 ohm

V=IR

V = 2A × ( 1+ 4 OHM)

V = 10V

d

equivalent resistance = Ro

1/Ro = 1/(2+8) + 1/(5+5)

1/Ro = 1/10 +1/10

2/10 = 1/ Ro

Ro= 10/2 = 5 ohm

V = IR

12V = I × 5Ohm

I=2.4 A

6 0
2 years ago
Which type of spacecraft would best be used to study the long-term effects of life in space on humans?
SVETLANKA909090 [29]
The best choice would be satellite
4 0
2 years ago
Read 2 more answers
What ecosystem do killer whales and seals belong to?
Anestetic [448]

Answer:

can be found in many waters, but the Antarctic ecosystem is where the population is highly condensed.

Explanation:

4 0
3 years ago
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating current I = 6.00 sin 90πt, where I is in
Leno4ka [110]

Answer:

The  electric field  is 35\cos(90\pi t)\ mV/m

Explanation:

Given that,

Radius = 2.00 cm

Number of turns per unit length n= 1.65\times10^{3}

Current I = 6.00\sin 90\pi t

We need to calculate the induced emf

\epsilon =\mu_{0}nA\dfrac{dI}{dt}

Where, n = number of turns per unit length

A = area of cross section

\dfrac{dI}{dt}=rate of current

Formula of electric field is defined as,

E=\dfrac{\epsilon}{2\pi r}

Where, r = radius

Put the value of emf in equation (I)

E=\dfrac{\mu_{0}nA\dfrac{dI}{dt}}{2\pi r}....(II)

We need to calculate the rate of current

I=6.00\sin 90\pi t....(III)

On differentiating equation (III)

\dfrac{dI}{dt}=90\pi\times6.00\cos(90\pi t)

Now, put the value of rate of current in equation (II)

E=\dfrac{4\pi\times10^{-7}\times1.65\times10^{3}\times\pi\times(2.00\times10^{-2})^2\times90\pi\times6.00\cos(90\pi t)}{2\pi\times 2.00\times10^{-2}}

E=35\cos(90\pi t)\ mV/m

Hence, The  electric field  is 35\cos(90\pi t)\ mV/m

7 0
3 years ago
Read 2 more answers
A large power plant generates electricity at 12.0 kV. Its old transformer once converted the voltage to 385 kV. The secondary of
enot [183]

Answer:

a) In the new transformer there are 42 turns in the secondary per turn in the primary, while in the old transformer there were 32 turns per turn in the primary.

b) The new output is 86% of the old output

c) The losses in the new line are 74% the losses in the old line.

Explanation:

a) To relate the turns of primary and secondary to the ratio of voltage we have this expression:

\frac{n_1}{n_2}=\frac{V_1}{V_2}

In the old transformer the ratio of voltages was:

\frac{n_1}{n_2}=\frac{V_1}{V_2}=\frac{12}{385} =0.03117\\\\n_2=n_1/0.03117=32.1n_1

In the new transformer the ratio of voltages is:

\frac{n_1}{n_2}=\frac{V_1}{V_2}=\frac{12}{500} =0.024\\\\n_2=n_1/0.24=41.7n_1

In the new transformer there are 42 turns in the secondary per turn in the primary, while in the old transformer there were 32 turns per turn in the primary.

b) The new current ratio is

\frac{V_1}{V_2}=\frac{I_2}{I_1}=\frac{12}{500}= 0.024\\\\I_2=0.024I_1

If the old current output was 425 kV, the ratio of current was:

\frac{V_1}{V_2}=\frac{I_2}{I_1}=\frac{12}{425}= 0.028\\\\I_2=0.028I_1

Then, the ratio of the new output over the old output is:

\frac{I_{2new}}{I_{2old}} =\frac{0.024\cdot I_1}{0.028\cdot I_1}= 0.86

The new output is 86% of the old output (smaller output currents lower the losses on the transmission line).

c) The power loss is expressed as:

P_L=I^2\cdot R

Then, the ratio of losses is (R is constant for both power losses):

\frac{P_n}{P_o} =\frac{I_n^2R}{I_o^2R} =(\frac{I_n}{I_o} )^2=0.86^2=0.74

The losses in the new line are 74% the losses in the old line.

7 0
3 years ago
Other questions:
  • A 15.4 kg block is dragged over a rough, horizontal surface by a constant force of 182 N acting at an angle of 24◦ above the hor
    5·1 answer
  • Which of the substances in the chart has the greatest density?
    13·1 answer
  • A longitudinal wave is a combination of a transverse wave and a surface wave.(true or false)
    7·1 answer
  • I need this asap please
    14·1 answer
  • If the color red has a wavelength of 7.0 107 m. its frequency is
    12·2 answers
  • Main ingredient of all cells
    11·1 answer
  • ASAP! State the direction of<br> the oscillation of a<br> longitudinal wave??<br> Worth 40 P! ASAP!
    13·1 answer
  • What are the factor that affect the efficiency of a pulley​
    8·1 answer
  • I need help. Is this right? ITS SO
    7·1 answer
  • Which hrase describes what atoms are made of? OA. A cloud of protons and neutrons surrounded by a nucleus of electrons OB. A nuc
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!