Answer:
T'=92.70°C
Explanation:
To find the temperature of the gas you use the equation for ideal gases:

V: volume = 3000cm^3 = 3L
P: pressure = 1250mmHg; 1 mmHg = 0.001315 atm
n: number of moles
R: ideal gas constant = 0.082 atm.L/mol.K
T: temperature = 27°C = 300.15K
For the given values you firs calculate the number n of moles:
![n=\frac{PV}{RT}=\frac{(1520[0.001315atm])(3L)}{(0.082\frac{atm.L}{mol.K})(300.15K)}=0.200moles](https://tex.z-dn.net/?f=n%3D%5Cfrac%7BPV%7D%7BRT%7D%3D%5Cfrac%7B%281520%5B0.001315atm%5D%29%283L%29%7D%7B%280.082%5Cfrac%7Batm.L%7D%7Bmol.K%7D%29%28300.15K%29%7D%3D0.200moles)
this values of moles must conserve when the other parameter change. Hence, you have V'=2L and P'=3atm. The new temperature is given by:

hence, T'=92.70°C
The answer is methamphetamine
Answer:
f=-1380N
Explanation:
A karate master wants to break a board by hitting the board swiftly with his hand. The master's hand has a mass of 0.30 kg, and as it strikes the board, his hand has a velocity of 23.3 m/s. The master contacts the board for 0.0050 seconds
.the concluding part to the question should be
What is the impact force (impulse) on the board?
solution
from the Newton's second law of motion which states that
the rate of change in momentum is directly proportional to the force applied
f=m(v-u)/t
f=0.3(0-23.3)/0.005
f=-1380N
f=force impact
m=mass of the karates master's hand
t=time for the impact
v=0m/s final velocity
u=initial velocity
Density is a physical property that describes the relationship between mass and volume. Density is the amount of matter in a given space, or volume.