Answer:
Newton's first law of motion states that an object at rest will remain at rest and an object in motion will remain in motion unless it is acted on by an unbalanced force. Using unbalanced forces to control the motion of a skateboard demonstrates Newton's first law of motion.
Hope it helps
Answer with Explanation:
Let rest mass
at point P at distance x from center of the planet, along a line connecting the centers of planet and the moon.
Mass of moon=m
Distance between the center of moon and center of planet=D
Mass of planet=M
We are given that net force on an object will be zero
a.We have to derive an expression for x in terms of m, M and D.
We know that gravitational force=
Distance of P from moon=D-x
=Force applied on rest mass due to m
=Force on rest mass due to mas M
because net force is equal to 0.





Let 
Then, 




b.We have to find the ratio R of the mass of the mass of the planet to the mass of the moon when x=
Net force is zero




Hence, the ratio R of the mass of the planet to the mass of the moon=4:1
Let's start by differentiating the terms distance and displacement. They both refer to the length of paths. Distance only accounts for the total length regardless of the path taken. Displacement measures the linear path from the starting point to the end point. So, it does not necessarily follow the actual path. However, for this problem, assuming that the path is just in one direction, displacement and distance would just be equal. The equation would be:
Distance = Displacement = v₀t + 0.5at² = 0(10 s) + 0.5(+1.2 m/s²)(10 s)²
Distance = Displacement = 60 meters
It is because of the high specific heat of water.
Specific heat is the amount of heat needed to change the temperature of unit mass of a substance by one degree.
Specific heat of water is 4.186 kJ/kg K and that of air is 1 kJ/kg K. Thus, a given amount of heat will cause more change in the temperature of air than that of water.