They are falling under the sole influence of gravity all objects<span> will </span>fall<span> with the </span>same<span> rate of </span><span>acceleration needless of there size</span>
Force, pressure, and charge are all what are called <em>derived units</em>. They come from algebraic combinations of <em>base units</em>, measures of things like length, time, temperature, mass, and current. <em>Speed, </em>for instance, is a derived unit, since it's a combination of length and time in the form [speed] = [length] / [time] (miles per hour, meters per second, etc.)
Force is defined with Newton's equation F = ma, where m is an object's mass and a is its acceleration. It's unit is kg·m/s², which scientists have called a <em>Newton</em>. (Example: They used <em>9 Newtons</em> of force)
Pressure is force applied over an area, defined by the equation P = F/A. We can derive its from Newtons to get a unit of N/m², a unit scientists call the <em>Pascal</em>. (Example: Applying <em>100 Pascals </em>of pressure)
Finally, charge is given by the equation Q = It, where I is the current flowing through an object and t is how long that current flows through. It has a unit of A·s (ampere-seconds), but scientist call this unit a Coulomb. (Example: 20 <em>Coulombs</em> of charge)
Answer:
dz = 7.136 (answer)
Explanation:
given height for kate's kite = 50 ft (say y)
due to drift it move towards east = dx = 7 ft
string maximum length = 107 ft ( say z)
we have to find change in z
that is dz
it will form a right angle triangle for x , y and z where x is base y is height and z is hypotenuse
so we get according to Pythagoras Theorem
...............(i)
by derivative both side consider y as constant

from (i) equation

now put the value and find dz

after solving these we get
dz = 7.136 (answer)
(a) The magnitude and direction of the net force on the crate while it is on the rough surface is 36.46 N, opposite as the motion of the crate.
(b) The net work done on the crate while it is on the rough surface is 23.7 J.
(c) The speed of the crate when it reaches the end of the rough surface is 0.45 m/s.
<h3>Magnitude of net force on the crate</h3>
F(net) = F - μFf
F(net) = 280 - 0.351(92 x 9.8)
F(net) = -36.46 N
<h3>Net work done on the crate</h3>
W = F(net) x L
W = -36.46 x 0.65
W = - 23.7 J
<h3>Acceleration of the crate</h3>
a = F(net)/m
a = -36.46/92
a = - 0.396 m/s²
<h3>Speed of the crate</h3>
v² = u² + 2as
v² = 0.845² + 2(-0.396)(0.65)
v² = 0.199
v = √0.199
v = 0.45 m/s
Thus, the magnitude and direction of the net force on the crate while it is on the rough surface is 36.46 N, opposite as the motion of the crate.
The net work done on the crate while it is on the rough surface is 23.7 J.
The speed of the crate when it reaches the end of the rough surface is 0.45 m/s.
Learn more about work done here: brainly.com/question/8119756
#SPJ1