True, because it is the state between solid and liquid
<h3><u>Solution</u><u>:</u></h3>
- Distance (d) = 112 m
- Time (t) = 4 seconds
- Let the speed be v.
- We know, speed = Distance / Time
- Therefore, v = d/t
or, v = 112 m ÷ 4 s = 28 m/s
<h3><u>Answer</u><u>:</u></h3>
<u>The </u><u>speed </u><u>of </u><u>the</u><u> </u><u>cheetah</u><u> </u><u>is </u><u>2</u><u>8</u><u> </u><u>m/</u><u>s.</u>
Answer:
0.000003782 m
0.000001891 m
0.000001197125 m
Explanation:
= Wavelength = 248 nm
D = Diameter of beam = 1 cm
f = Focal length = 0.625 cm
The angle is given by

The width is given by

The required width is 0.000003782 m
Minimum resolvable line separation is given by

The minimum resolvable line separation between adjacent lines is 0.000001891 m
when 

The new minimum resolvable line separation between adjacent lines is

Answer: coefficient of static friction
= 0.31
Explanation: Since they negotiate the curve without skidding, the frictional force (F1) equals the centripetal force (F2).
F1= uN
F2 = M*(v²/r)
M is the combined mass 450kg
V is the velocity 18m/s
r is the radius 106m
N is the normal reaction 4410N
u is the coefficient of static friction
Making u subject of the formula we have that,
u = {450*(18²/106)} /4410
=1375.47/4410
=0.31
NOTE: coefficient of friction is dimensionless. It as no Unit.