Answer:
True
Explanation:
Electronegativity difference of less than 0.4 characterized covalent bonds. For two atoms with an electronegativity difference of between 0.4 and 2.0, a polar covalent bond is formed-one that is neither ionic nor totally covalent.
<span>Soil conservation involves protecting soil quality and preventing erosion.
Answer: A</span>
<h2><em>state coulombs law in word</em></h2>
- <em>: a statement in physics: <u>the force of attraction or repulsion acting along a straight line between two electric charges is directly proportional to the product of the charges and inversely to the square of the distance between </u></em><em><u>them</u></em>
<em><u>hope </u></em><em><u>it</u></em><em><u> helps</u></em>
<em><u>#</u></em><em><u>c</u></em><em><u>a</u></em><em><u>r</u></em><em><u>r</u></em><em><u>y</u></em><em><u> </u></em><em><u>on</u></em><em><u> learning</u></em>
Answer:
Explanation:
In this case, law of conservation of energy will be implemented. It states that "the energy of the system remains conserved until or unless some external force act on it. Energy of the system may went through the conversion process like kinetic energy into potential and potential into kinetic energy.But their total always remain the same in conserved systems."
Given data:
Height of tower = 10.0 m
Depth of the pool = 3.00 cm
Mass of person = 61.0 kg
Solution:
Initial energy = Final energy

As the person was at height initially so it has the potential energy only.



Lets find out the magnitude of the force that the water is exerting on the diver.
W =ΔK.E


F = 1992.67 N