Answer: 100 suns
Explanation:
We can solve this with the following relation:

Where:
is the diameter of a dime
is the diameter of the Sun
is the distance between the Sun and the pinhole
is the amount of dimes that fit in a distance between the sunball and the pinhole
Finding
:


This is roughly the diameter of the Sun
Now, the distance between the Earth and the Sun is one astronomical unit (1 AU), which is equal to:

So, we have to divide this distance between
in order to find how many suns could it fit in this distance:

<span>Reduce energy use.
Change the way you think about transportation. Walk or bike whenever possible.
Insulate your home. Insulate yourself and your home.
Make every drop count.
</span>Cool wash and hang to dry.
<span>Switch to "green power.
</span>Recycle.
<u>Answer</u>
The combined displacement is 2km north
<u>Explanation</u>
Since displacement is a vector quantity, we take into account the direction.
Good for us all the displacement vectors are in the same dimension, so we can make north positive and south negative or vice-versa.
We now add to obtain,

This will simplify to

Therefore the combined displacement is 2km north
Location A receives more rainfall than Location B due to the rain shadow effect.
<u>Explanation</u>:
- Rain shadow effect is caused due to the presence of mountains.
- A rain shadow area is an area of land that has been forced to become dry, devoid of any vegetation growth due to the blockage of precipitation by mountains. These rain shadow areas will have a dry climate.
- The other side of the mountain would receive plenty of precipitation and therefore would be flourished with plant growth. These areas will have a cool and wet climate.
- In this case, Location A is on the other side of the mountain and so receives more rainfall or precipitation. Meanwhile, Location B is on the rain shadow region and so receives less rainfall.
Answer:
The helicopter was 1103.63 meters high when the package was dropped.
Explanation:
We consider positive speed as a downward movement
y: height (m)
t: time (s)
v₀: initial speed (m/s)
Δy = v₀t +
gt²
Δy= 15
×15 s +
×9.81
×(15 s)²
Δy= 1103.63 m