Answer:
0.366×10^{-3} / s
Explanation:
θ = θmax e^{-bt/2m}
Given that
θ = 5.50°
θmax = 15.0°
So that we have
ln (θ / θmax) = -bt /2m
= - ln(5.50°/ 15.0°) / 1000s = b /2m
= b / 2m = 0.366×10^{-3} / s
Answer:
6.46393559312 m/s²
Explanation:
Time taken to cover 56 m

Distance covered in 0.42 seconds

From equation of linear motion


The minimum acceleration is 6.46393559312 m/s²
B. moving electric charges, hope this helps :)
The angle of incidence for a ray of light passing through the center of curvature of a concave mirror is 0°.
The angle of incidence is the angle between the surface's normal and the incident ray. For a concave mirror, the normal of the surface is along the center of the curvature, and a ray of light passed through a center of curvature passes through the normal of the surface.
The ray of light retreats its path making a zero angle of reflection. The law of reflection state that the angle of incidence is equal to the angle of reflection; therefore, the angle of incidence of a concave surface passed through the center of curvature is zero degrees.
Learn more about the angle of incidence here:
brainly.com/question/3432273
#SPJ4