A) The answer is 11.53 m/s
The final kinetic energy (KEf) is the sum of initial kinetic energy (KEi) and initial potential energy (PEi).
KEf = KEi + PEi
Kinetic energy depends on mass (m) and velocity (v)
KEf = 1/2 m * vf²
KEi = 1/2 m * vi²
Potential energy depends on mass (m), acceleration (a), and height (h):
PEi = m * a * h
So:
KEf = KEi + <span>PEi
</span>1/2 m * vf² = 1/2 m * vi² + m * a * h
..
Divide all sides by m:
1/2 vf² = 1/2 vi² + a * h
We know:
vi = 9.87 m/s
a = 9.8 m/s²
h = 1.81 m
1/2 vf² = 1/2 * 9.87² + 9.8 * 1.81
1/2 vf² = 48.71 + 17.74
1/2 vf² = 66.45
vf² = 66.45 * 2
vf² = 132.9
vf = √132.9
vf = 11.53 m/s
b) The answer is 6.78 m
The kinetic energy at the bottom (KE) is equal to the potential energy at the highest point (PE)
KE = PE
Kinetic energy depends on mass (m) and velocity (v)
KE = 1/2 m * v²
Potential energy depends on mass (m), acceleration (a), and height (h):
PE = m * a * h
KE = PE
1/2 m * v² = m * a * h
Divide both sides by m:
1/2 * v² = a * h
v = 11.53 m/s
a = 9.8 m/s²
h = ?
1/2 * 11.53² = 9.8 * h
1/2 * 132.94 = 9.8 * h
66.47 = 9.8 * h
h = 66.47 / 9.8
h = 6.78 m
To solve this problem, we use the equation:
<span>d = (v^2 - v0^2) /
2a</span>
where,
d = distance of collapse
v0 = initial velocity = 101 km / h = 28.06 m / s
v = final velocity = 0
a = acceleration = - 300 m / s^2
d = (-28.06 m / s)^2 / (2 * - 300 m / s^2)
<span>d = 1.31 m</span>
Answer:
Push and pull both are forces , but the difference is in their direction at which it is applied . If the force applied in the direction of motion of the particle then we call it as push . If that force applied in the direction OPPOSITE to the motion of particle then it is termed as pull
Answer:
A) d = 11.8m
B) d = 4.293 m
Explanation:
A) We are told that the angle of incidence;θ_i = 70°.
Now, if refraction doesn't occur, the angle of the light continues to be 70° in the water relative to the normal. Thus;
tan 70° = d/4.3m
Where d is the distance from point B at which the laser beam would strike the lakebottom.
So,d = 4.3*tan70
d = 11.8m
B) Since the light is moving from air (n1=1.00) to water (n2=1.33), we can use Snell's law to find the angle of refraction(θ_r)
So,
n1*sinθ_i = n2*sinθ_r
Thus; sinθ_r = (n1*sinθ_i)/n2
sinθ_r = (1 * sin70)/1.33
sinθ_r = 0.7065
θ_r = sin^(-1)0.7065
θ_r = 44.95°
Thus; xonsidering refraction, distance from point B at which the laser beam strikes the lake-bottom is calculated from;
d = 4.3 tan44.95
d = 4.293 m
Sound waves are a type of classical waves and so they transport only energy without transporting matter through the medium.