One that can help you is:
ΔT=<span>T<span>Final</span></span>−<span>T<span>Initia<span>l
That is of course adding both tmepratures. There is one more that is a lil bit more complex
</span></span></span><span><span>Tf</span>=<span>Ti</span>−Δ<span>H<span>rxn</span></span>∗<span>n<span>rxn</span></span>/(<span>C<span>p,water</span></span>∗<span>m<span>water</span></span>)
This one is taking into account that yu can find temperature and that there could be a change with a chemical reaction. Hope this helps</span>
Answer:
True.
Explanation:
If the sum of the external forces on an object is zero, then the sum of the external torques on it must also be zero.
The net external force and the net external torque acting on the object have to be zero for an object to be in mechanical equilibrium.
Hence, the given statement is true.
Answer:
1.4 * 10 ^-1 Ω
Explanation:
Hi,
For this question, we gotta use the formula
R = pL/A
p = The resistivity of your material at 20°C
L = length of the wire
A = cross-sectional area
The resistivity of tungsten is 5.60 * 10^-8 at 20°C
By plugging the values, we get:
R = (5.60 * 10^-8)(2.0)/(7.9*10^-7) = 1.4 * 10 ^-1 Ω
3. is the answer, <span>Sodium needs to lose one electron, and chlorine needs to gain one electron. This is because Sodium's row always wants to give away an electron, while Chlorine's row wants to gain an electron.</span>