Answer: The angle of inclination is nearly 30°
Explanation:
For a body on an inclined plane, the coefficient of friction between the body and the plane is equal to the ratio of the moving force applied to the body to the frictional force acting on the body.
If uK coefficient of friction;
Fm is the moving force
R is the normal reaction on the body
Mathematically uK = Fm/R
Fm = WSin(theta)
R = Wcos(theta)
uK = Wsin(theta)/Wcos(theta)
uK = tan(theta)
theta = arctan(uK)
If uK is 0.58
theta = arctan0.58
theta = 30°
The angle of the inclined will be 30°
Answer:
Explanation:
Mathematically, linear momentum is expressed as the product of mass and velocity. Linear momentum conservation law states that a body or system of bodies retains its total momentum unless an external force is applied to the system.
In this case, the system consists of two carts.
At the start, the linear momentum (P) of the system is equal to:

It's only composed of linear momentum of the standard cart because cart A doesn't have any linear momentum at that moment.
After the collision, linear momentum has to be the same

where m_A is the mass of the cart A.
Solving for m_A

After the cart A rebounds, the linea momentum of the system has changed (because of the force present in the rebound). The new linear momentum is:

Then, the lump of putty is added to the system, but the linear momentum has to be the same, because we added a mass, not a force. The mass of that putty (m_p) has to be added to the equation of the system

Solving for m_p

C. Have like poles that repel each other
Answer:
When the ball is held motionless above the floor, the ball possesses only GPE energy.If the ball is dropped, its GPE energy decreases as it falls.If the ball is dropped, its KE energy increases as it falls.
Explanation:
If the ball is held motionless, then its kinetic energy is equal to zero, since kinetic energy depends on the velocity. And the ball is held above the ground, which means it possesses gravitational potential energy.
If the ball is dropped, its height will decrease, therefore its gravitational potential energy will decrease. Along the way, the ball will be in free fall, and therefore its velocity will increase, hence its kinetic energy.
