Answer: Option D: 5.5×10²Joules
Explanation:
Work done is the product of applied force and displacement of the object in the direction of force.
W = F.s = F s cosθ
It is given that the force applied is, F = 55 N
The displacement in the direction of force, s = 10 m
The angle between force and displacement, θ = 0°
Thus, work done on the object:
W = 55 N × 10 m × cos 0° = 550 J = 5.5 × 10² J
Hence, the correct option is D.
<em>A statement that is true for ALL of the examples of electromagnetic waves is that;</em>
A) They all move at the same speed in a vacuum
<u>The reason for qualifying 'in vacuum' is because EM waves of different frequencies often propagate at different speeds through material. Generally speaking, we say that light travels in waves, and all electromagnetic radiation travels at the same speed which is about 3.0 * 108 meters per second through a vacuum.</u>
Answer:
Lightening of the table lamp
Explanation:
Energy has a different form of energy. In physics, the capacity of the form of energy is work. The energy can exist in the form of thermal, potential, kinetic, chemical and electrical, and nuclear. There are other forms of energy such as work and heat.
The energy is designated according to the nature of the objects. So that when heat transferred it has been changed into thermal. All the forms of energy are related to the motion of an object. Energy can neither destroyed or created.
Answer:
a)η = 69.18 %
b)W= 1210 J
c)P=3967.21 W
Explanation:
Given that
Q₁ = 1749 J
Q₂ = 539 J
From first law of thermodynamics
Q₁ = Q₂ +W
W=Work out put
Q₂=Heat rejected to the cold reservoir
Q₁ =heat absorb by hot reservoir
W= Q₁- Q₂
W= 1210 J
The efficiency given as



η = 69.18 %
We know that rate of work done is known as power


P=3967.21 W