1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xz_007 [3.2K]
3 years ago
15

a cylindrical jar is 10cm long and has a cross sectional area of 36cm. if it is completely filled with a fluid of relative densi

ty 0.2, calculate the mass of the fluid in the jar​
Physics
1 answer:
ki77a [65]3 years ago
6 0

Answer:

The mass of the fluid is 72 g.

Explanation:

The following data were obtained from the question:

Height (h) = 10 cm

Area of cross section (A) = 36cm²

Relative density = 0.2

Mass =..?

Next, we shall determine the volume of the cylinder. This can be achieved by doing the following:

Volume = Area x Height

Volume = 36 x 10

Volume = 360 cm³

Next, we shall determine the density of the liquid.

This can be obtained as follow:

Relative density = density of substance/density of water.

Relative density = 0.2

Density of water = 1 g/cm³

Density of fluid =...?

Relative density = density of substance/density of water.

0.2 = density of fluid / 1 g/cm³

Cross multiply

Density of fluid = 0.2 x 1 g/cm³

Density of fluid = 0.2 g/cm³

Finally, we shall determine the mass of fluid as follow:

Volume = 360 cm³

Density of fluid = 0.2 g/cm³

Mass of fluid =...?

Density = mass /volume.

0.2 g/cm³ = mass of fluid /360 cm³

Cross multiply

Mass of fluid = 0.2 g/cm³ x 360 cm³

Mass of fluid = 72 g

Therefore, the mass of the fluid in the jar is 72 g.

You might be interested in
An experimental tungsten light bulb filament has a length of 5 cm and a diameter of 0.074 cm. The filament is basically just a w
adell [148]

Answer:

power emitted is 1.75 W

Explanation:

given data

length l = 5 cm = 5 ×10^{-2} m

diameter d = 0.074 cm = 74 ×10^{-5} m

total filament emissivity = 0.300

temperature = 3068 K

to find out

power emitted

solution

we find first area that is π×d×L

area = π×d×L

area = π×74 ×10^{-5}×5 ×10^{-2}

area = 1162.3892  ×10^{-5} m²

so here power emitted  is express as

power emitted  = E × σ × area × (temperature)^4

put here all value

power emitted  = 0.300× 5.67 × 1162.3892  ×10^{-5}  × (3068)^4

power emitted = 1.75 W

5 0
3 years ago
I hope you are able to read this question?? Help ASAP this question is on the quiz tommorow
Masteriza [31]

You would be correct.

Because you have only JUST released the arrow, and how close he is to the target, it would have the same amount of energy when it strikes the target. Yes, the kinetic energy would be destroyed when you hit the target but not right away. And yes, the potential energy would also be destroyed once you release the arrow, but it goes straight back once it stops moving, aka when it hits the target, although it has only just stopped moving.

Hope this helps!

8 0
3 years ago
You push a desk with 245 N, but the desk doesn't move due to its friction with the ground. What is the magnitude of the friction
const2013 [10]

If the desk doesn't move, then it's not accelerating.

If it's not accelerating, then the net force on it is zero.

If the net force on it is zero, then any forces on it are balanced.

If there are only two forces on it and they're balanced, then they have equal strengths, and they point in opposite directions.

So the friction on the desk must be equal to your<em> 245N</em> .

7 0
3 years ago
A ball of mass 0.150 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor to reach a height of 0.665 m. W
Liula [17]

Answer:

Impulse is 1.239 kg.m/s in upward direction

Explanation:

Taking upward motion as positive and downward motion as negative.

Downward motion:

Given:

Mass of ball (m) = 0.150 kg

Displacement of ball (S) = -1.25 m

Initial velocity (u) = 0 m/s

Acceleration is due to gravity (g) = -9.8 m/s²

Using equation of motion, we have:

v_d^2=u^2+2aS\\\\v=\pm\sqrt{u^2+2aS}\\\\v_d=\pm\sqrt{0+2\times -9.8\times -1.25}\\\\v_d=\pm\sqrt{24.5}=\pm4.95\ m/s

Since, the motion is downward, final velocity must be negative. So,

v_d=-4.95\ m/s

Upward motion:

Given:

Displacement of ball (S) = 0.665 m

Initial velocity (v_d) = 4.95 m/s(Upward direction)

Acceleration is due to gravity (g) = -9.8 m/s²

Using equation of motion, we have:

v_{up}^2=v_d^2+2aS\\\\v_{up}=\pm\sqrt{v_d^2+2aS}\\\\v_{up}=\pm\sqrt{24.5+2\times -9.8\times 0.665}\\\\v_{up}=\pm\sqrt{10.966}=\pm3.31\ m/s

Since, the motion is upward, final velocity must be positive. So,

v_{up}=3.31\ m/s

Now, impulse is equal to change in momentum. So,

Impulse = Final momentum - Initial momentum

J=m(v_{up}-v_d)\\\\J=(0.150\ kg)(3.31-(-4.95))\ m/s\\\\J=0.150\ kg\times 8.26\ m/s\\\\J=1.239\ Ns

Therefore, the impulse given to the ball by the floor is 1.239 kg.m/s in upward direction.

5 0
3 years ago
Please help!!
Luba_88 [7]

Answer:

Bath CD jshchdhdhfhfhhfhd jpg de f for frr for gi Jhong GO by be jr jpg be

8 0
2 years ago
Read 2 more answers
Other questions:
  • What is the difference b/w distance and displacement?
    10·1 answer
  • Please help have no clue on this
    11·1 answer
  • A net horizontal force of 2000 n is applied to an 800-kg car at rest. the car's speed after 5 s will be
    14·1 answer
  • One hundred turns of insulated copper wire are wrapped around an iron core of cross-sectional area 0.100m2. As the magnetic fiel
    15·1 answer
  • Which element is most likely to carry electric current easily?
    15·1 answer
  • Which value is equivalent to 7.2 kilograms?
    8·2 answers
  • A baseball rolls off a 1.20m high desk and strikes the floor 0.50m away from the base of the desk . How fast was it rolling?
    9·1 answer
  • 4. Which of the following is equivalent to 800 cm?
    8·1 answer
  • Which nucleus completes the following equation?<br> A. 299 Np<br> B. 20Pa<br> C. 2 Pa<br> D. - Np
    10·1 answer
  • 7. The Cuyahoga River in Ohio has caught fire
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!