1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vika [28.1K]
3 years ago
8

What is the moment of inertia of a 2.0 kg, 20-cm-diameter disk for rotation about an axis (a) through the center, and (b) throug

h the edge of the disk?
Physics
1 answer:
FinnZ [79.3K]3 years ago
8 0

Answer:

(a) I=0.01 kg.m²

(b) I=0.03 kg.m²

Explanation:

Given data

Mass of disk M=2.0 kg

Diameter of disk d=20 cm=0.20 m

To Find

(a) Moment of inertia through the center of disk

(b) Moment of inertia through the edge of disk

Solution

For (a) Moment of inertia through the center of disk

Using the equation of moment  of Inertia

I=\frac{1}{2}MR^{2}\\  I=\frac{1}{2}(2.0kg)(0.20m/2)^{2}\\  I=0.01 kg m^{2}

For (b) Moment of inertia through the edge of disk

We can apply parallel axis theorem for calculating moment of inertia

I=(1/2)MR^{2}+MD\\ Here\\D=R\\I=(1/2)(2.0kg)(0.20m/2)^{2}+(2.0kg)(0.20m/2)^{2}\\  I=0.03kgm^{2}

You might be interested in
A 220 kg crate hangs from the end of a rope of length L = 14.0 m. You push horizontally on the crate with a varying force F to m
kifflom [539]

<u>Answer</u>:

(a) magnitude of F = 797 N

(b)the total work done  W = 0

(c)work done by the gravitational force =  -1.55 kJ

(d)the work done by the pull  = 0

(e) work your force F does on the crate = 1.55 kJ

<u>Explanation</u>:

<u>Given</u>:

Mass of the crate, m =  220 kg

Length of the rope, L = 14.0m

Distance, d =  4.00m

<u>(a) What is the magnitude of F when the crate is in this final position</u>

Let us first determine vertical angle as follows

=>Sin \theta = \frac{d }{L}

=> \theta = Sin^{-1} \frac{d}{L} =

Now substituting thje values

=> \theta = Sin^{-1} \frac{4}{12} =

=> \theta = Sin^{-1} \frac{1}{3}

=> \theta = Sin^{-1}(0.333)

=> \theta = 19.5^{\circ}

Now the tension in the string resolve into components

The vertical component supports the weight

=>Tcos\theta = mg

=>T = \frac{mg}{cos\theta}

=>T = \frac{230 \times 9.8 }{cos(19.5)}

=>T = \frac{2254 }{cos(19.5)}

=>T = \frac{2254 }{0.9426}

=>T =2391N

Therefore the horizontal force

F = TSin(19.5)

F = 797 N

b) The total work done on it

As there is no change in Kinetic energy

The total work done W = 0

<u>c) The work done by the gravitational force on the crate</u>

The work done by gravity

Wg = Fs.d = - mgh

Wg = - mgL ( 1 - Cosθ )

Substituting the values                                                            

= -230 \times 9.8\times 12 ( 1 - cos(19.5) )

= -230 \times 9.8\times 12 ( 1 - 0.9426) )

= -230 \times 9.8\times 12 (0.0574)

= -230 \times 9.8\times 0.6888

=  -230 \times 6.750

= -1552.55 J

The work done by gravity = -1.55 kJ

<u>d) the work done by the pull on the crate from the rope</u>

Since the pull  is perpendicular to the direction of motion,

The work done = 0

e)Find the work your force F does on the crate.

Work done by the Force on the crate

WF = - Wg  

WF = -(-1.55)

WF = 1.55 kJ

<u>(f) Why is the work of your force not equal to the product of the horizontal displacement and the answer to (a)</u>

Here the work done by force is not equal to F*d  

and it is equal to product of the cos angle and F*d

So, it is not equal to the product of the horizontal displacement and the answer to (a)      

7 0
3 years ago
Describe a real-world example of the law of conservation of momentum.
mario62 [17]
Imagine a car crash. A car coming at a high speed has a head on collision with a car at rest. When the car makes impact, it will move the other car with it at a slower speed then it was travelling at. In this case, the velocity decreased since the car slowed down, but the mass increased since there are now two cars moving. Momentum was conserved because the change in mass accounts for the loss of velocity.
4 0
3 years ago
A hockey puck is struck so that it slides at a constant speed and strikes the far side of the rink, 58.2 m away. The shooter hea
DENIUS [597]

Answer:

v = 33.66 m/s

Explanation:

Let hockey puck is moving at constant speed v

so here we have

d = vt

so time taken by the puck to strike the wall is given as

t = \frac{58.2}{v}

now time taken by sound to come back at the position of shooter is given as

t_2 = \frac{58.2}{340}

t_2 = 0.17s

so we know that total time is 1.9 s

1.9 = t + t_2

1.9 = t + 0.17

1.9 - 0.17 = t

t = 1.73 s

now we have

1.73 = \frac{58.2}{v}

v = 33.66 m/s

7 0
3 years ago
Jaiden is writing a report about the structure of the atom. In her report, she says that the atom has three main parts and two s
USPshnik [31]
No because an atom consists of <u>two</u> main parts <em>and</em> <u>three</u> subatomic particles - protons, neutrons, electrons. Each one is smaller than an atom, therefore they are subatomic particles. An atom only requires protons and electrons to be an atom - e.g. Hydrogen has 1 proton and 1 electron. Neutrons do not affect the overall charge of the atom, and only increase the atomic mass.
7 0
3 years ago
Read 2 more answers
0.16 mol of argon gas is admitted to an evacuated 70 cm^3 container at 30°C. The gas then undergoes an isothermal expansion to a
Semmy [17]

Answer:

The final pressure of the gas is 9.94 atm.

Explanation:

Given that,

Weight of argon = 0.16 mol

Initial volume = 70 cm³

Angle = 30°C

Final volume = 400 cm³

We need to calculate the initial pressure of gas

Using equation of ideal gas

PV=nRT

P_{i}=\dfrac{nRT}{V}

Where, P = pressure

R = gas constant

T = temperature

Put the value in the equation

P_{i}=\dfrac{0.16\times8.314\times(30+273)}{70\times10^{-6}}

P_{i}=5.75\times10^{6}\ Pa

P_{i}=56.827\ atm

We need to calculate the final temperature

Using relation pressure and volume

P_{2}=\dfrac{P_{1}V_{1}}{V_{2}}

P_{2}=\dfrac{56.827\times70}{400}

P_{2}=9.94\ atm

Hence, The final pressure of the gas is 9.94 atm.

3 0
3 years ago
Other questions:
  • In what direction do seismic waves carry the energy of an earthquake?
    6·2 answers
  • Somewhere in the vast flat tundra of planet Tehar, a projectile is launched from the ground at an angle of 60 degrees. It reache
    9·1 answer
  • A dripping water faucet steadily releases drops 1.0 s apart. As these drops fall, does the distance between them increase, decre
    13·1 answer
  • A 0.500 kg block of lead is heated from 295 K to 350. K. How much heat was absorbed by the lead? (express your answer to the nea
    14·1 answer
  • What is the vacuole in a plant cell?
    9·2 answers
  • Four forces are exerted on each of the two objects shown below:
    15·2 answers
  • Pls answer this is a timed test
    15·1 answer
  • State the relationship between the mass of trolley and acceleration of the trolley?
    12·1 answer
  • What type of smog is created when
    12·1 answer
  • (1 point)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!