Light. The black hole is a vacuum, and not even light can escape it's suction
The compression curve would be theoretically given for a system of bodies in which the spring applies the force (Although in the same way the following process can be extrapolated to any system, depending on the type of Force to consider) For a spring mass system, the strength is given by Hooke's law as

Where,
K = Spring constant
x = Displacement
If we integrate based on distance we would have

This integral represents the area under the Force Curve based on each distance segment traveled.



This is the same formula that represents the elastic potential energy of a body. Therefore the correct answer is D.
Answer: Can I get a picture???
Answer:
A record player has a velocity of 33.33 RPM. How fast is the record spinning in m/s at a distance of 0.085 m from the center? [0.297 m/s] 6. A merry-go-round a.k.a “the spinny thing” is rotating at 15 RPM, and has a radius of 1.75 m A.
<span>A) x = 41t
The classic equation for distance is velocity multiplied by time. And unfortunately, all of your available options have the form of that equation. In fact, the only difference between any of the equations is what looks to be velocity. And in order to solve the problem initially, you need to divide the velocity vector into a vertical velocity vector and a horizontal velocity vector. And the horizontal velocity vector is simply the cosine of the angle multiplied by the total velocity. So
H = 120*cos(70) = 120*0.34202 = 41.04242
So the horizontal velocity is about 41 m/s. Looking at the available options, only "A" even comes close.</span>