Answer:
The minimum speed = 
Explanation:
The minimum speed that the rocket must have for it to escape into space is called its escape velocity. If the speed is not attained, the gravitational pull of the planet would pull down the rocket back to its surface. Thus the launch would not be successful.
The minimum speed can be determined by;
Escape velocity = 
where: G is the universal gravitational constant, M is the mass of the planet X, and R is its radius.
If the appropriate values of the variables are substituted into the expression, the value of the minimum speed required can be determined.
Complete question is:
A 1200 kg car reaches the top of a 100 m high hill at A with a speed vA. What is the value of vA that will allow the car to coast in neutral so as to just reach the top of the 150 m high hill at B with vB = 0 m/s. Neglect friction.
Answer:
(V_A) = 31.32 m/s
Explanation:
We are given;
car's mass, m = 1200 kg
h_A = 100 m
h_B = 150 m
v_B = 0 m/s
From law of conservation of energy,
the distance from point A to B is;
h = 150m - 100 m = 50 m
From Newton's equations of motion;
v² = u² + 2gh
Thus;
(V_B)² = (V_A)² + (-2gh)
(negative next to g because it's going against gravity)
Thus;
(V_B)² = (V_A)² - (2gh)
Plugging in the relevant values;
0² = (V_A)² - 2(9.81 × 50)
(V_A) = √981
(V_A) = 31.32 m/s
Answer:
The answer is 24cm
Explanation:
This problem bothers on the curved mirrors, a concave type
Given data
Object height h= 5cm
Object distance = 12cm
Focal length f=24cm
Let the image distance be v=?
Applying the formula we have
1/v +1/u= 1/f
Substituting our given data
1/v+1/12=1/24
1/v=1/24-1/12
1/v=1-2/24
1/v=-1/24
v= - 24cm
This implies that the image is on the same side as the object and it is real
Answer:
Because it is made by two different unit force (F) and displacement(s)
Answer:
its correct no need to change anything :))