1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sati [7]
2 years ago
11

A certain sprinter has a top speed of 11.3 m/s. If the sprinter starts from rest and accelerates at a constant rate, he is able

to reach his top speed in a distance of 12.8 m. He is then able to maintain his top speed for the remainder of a 100 m race. (a) What is his time for the 100 m race? (b) In order to improve his time, the sprinter tries to decrease the distance required for him to reach
h his top speed. What must this distance be if he is to achieve a time of 9.75 s for the race?
Physics
1 answer:
valkas [14]2 years ago
5 0

Answer:

Explanation:

initial velocity u = 0

final velocity v = 11.3 m /s

distance covered s = 12.8 m

v² = u² + 2 a s

11.3² = 0 + 2 x a x 12.8

a = 4.99 m /s²

again ,

v = u + a t

11.3 = 0 + 4.99 t

t = 2.26 s .

Rest of the sprint will be covered with uniform velocity .

Distance covered = 100 - 12.8 = 87.2 m

speed = 11.3 m /s

time taken = 87.2 / 11.3 = 7.7 s

Total time of 100 m sprint = 7.7 + 2.26 = 9.96 m .

b )

Let the time taken to reach the top speed be t .

acceleration a = 11.3 / t

distance covered s = 1/2 a t²

= .5 x (11.3 / t) x t²

= 5.65 t

Rest of the distance = 100 - 5.65 t

time taken to cover rest of the distance = (100 - 5.65 t ) / 11.3

Total time =  (100 - 5.65 t  / 11.3 ) + t = 9.75

100 - 5.65 t + 11.3 t = 11.3 x 9.75

100 + 5.65 t = 110.175

5.65 t = 10.175

t = 1.8

acceleration a = 11.3 / t

= 11.3 / 1.8

= 6.278 m /s²

distance covered in 1.8 s

s = 1/2 a t²

= .5 x 6.278 x 1.8²

= 10.17 m .

 

You might be interested in
If a material contains three elements but not joined in a fixed proportion it is a
iren [92.7K]
My answer -

<span> a molecule The clues are that it is elements, so that means atoms, and that it is in a fixed proportion like a molecular formula.

Happy to help you have a great day
</span>
4 0
3 years ago
1) A person riding their bike on a nice cloudy day travels 50 meters in 20 seconds.
Rasek [7]

Answer:

5.59

Explanation:

50 meters in 10 seconds is 11.18, which is an easy way to remember. Just divided by 2

5 0
2 years ago
At a constant pressure, melting occurs by A) producing energy. B) absorbing energy. C) releasing energy. D) circulating energy.
olganol [36]
Realizing energy.......
5 0
3 years ago
Read 2 more answers
A 4.00-g bullet, traveling horizontally with a velocity of magnitude 400 m/s, is fired into a wooden block with mass 0.650 kg ,
Maru [420]

Answer:

a) Coefficient of kinetic friction between block and surface = 0.12

b) Decrease in kinetic energy of the bullet = 247.8 J

c) Kinetic energy of the block at the instant after the bullet passes through it = 0.541 J

Explanation:

Given,

Mass of bullet = 4.00 g = 0.004 kg

Initial velocity of the bullet = 400 m/s

Mass of wooden block = 0.65 kg

Initial velocity of the wooden block = 0 m/s (since it was initially at rest)

Final velocity of the bullet = 190 m/s

Distance slid through by the block after the collision = d = 72.0 cm = 0.72 m

Let the velocity of the wooden block after collision be v

According to the law of conservation of momentum,

Momentum before collision = Momentum after collision

Momentum before collision = (Momentum of bullet before collision) + (Momentum of wooden block before collision)

Momentum of bullet before collision = (0.004×400) = 1.6 kgm/s

Momentum of wooden block before collision = (0.65)(0) = 0 kgm/s

Momentum after collision = (Momentum of bullet after collision) + (Momentum of wooden block after collision)

Momentum of bullet after collision = (0.004×190) = 0.76 kgm/s

Momentum of wooden block after collision = (0.65)(v) = (0.65v) kgm/s

Momentum balance gives

1.6 + 0 = 0.76 + 0.65v

0.65v = 1.6 - 0.76 = 0.84

v = (0.84/0.65)

v = 1.29 m/s

The velocity of the wooden block after collision = 1.29 m/s

To obtain the coefficient of kinetic friction between block and surface, we will apply the work-energy theorem.

The work-energy theorem states that the work done in moving the block from one point to another is equal to the change in kinetic energy of the block between these two points.

The points to consider are the point when the block starts moving (immediately after collision) and when it stops as a result of frictional force.

Mathematically,

W = ΔK.E

W = workdone by the frictional force in stopping the wooden block (since there is no other horizontal force acting on the block)

W = -F.d (minus sign because the frictional force opposes motion)

d = Distance slid through by the block after the collision = 0.72 m

F = Frictional force = μN

where N = normal reaction of the surface on the wooden block and it is equal to the weight of the block.

N = W = mg

F = μmg

W = - μmg × d = (-μ)(0.65)(9.8) × 0.72 = (-4.59μ) J

ΔK.E = (final kinetic energy of the block) - (initial kinetic energy of the block)

Final kinetic energy of the block = 0 J (since the block comes to a rest)

(Initial kinetic energy of the block) = (1/2)(0.65)(1.29²) = 0.541 J

ΔK.E = 0 - 0.541 = - 0.541 J

W = ΔK.E

-4.59μ = -0.541

μ = (0.541/4.59)

μ = 0.12

b) The decrease in kinetic energy of the bullet

(Decrease in kinetic energy of the bullet) = (Kinetic energy of the bullet before collision) - (Kinetic energy of the bullet after collision)

Kinetic energy of the bullet before collision = (1/2)(0.004)(400²) = 320 J

Kinetic energy of the bullet after collision = (1/2)(0.004)(190²) = 72.2 J

Decrease in kinetic energy of the bullet = 320 - 72.2 = 247.8 J

c) Kinetic energy of the block at the instant after the bullet passes through it = (1/2)(0.65)(1.29²) = 0.541 J

Hope this Helps!!!

4 0
2 years ago
A 0.55-μF capacitor is connected to a 3.5-V battery. How much charge is on each plate of the capacitor?
yan [13]

Answer:

1.925 μC

Explanation:

Charge: This can be defined as the product of the capacitance of a capacitor and the voltage. The S.I unit of charge is Coulombs (C)

The formula for the charge stored in a capacitor is given as,

Q = CV ................... Equation 1

Where Q = charge, C = Capacitor, V = Voltage.

Note: 1 μF  = 10⁻⁶  F

Given: C = 0.55 μF = 0.55×10⁻⁶ F, V = 3.5 V.

Substitute into equation 1

Q = 0.55×10⁻⁶×3.5

Q = 1.925×10⁻⁶ C.

Q = 1.925 μC

Hence the charge on the plate = 1.925 μC

6 0
3 years ago
Read 2 more answers
Other questions:
  • What are the different types of simple machines and some of their functions?
    6·1 answer
  • Why is the warm air rising while the cold air is sinking
    15·2 answers
  • A shell is fired from the ground with an initial speed of 1.51 ✕ 10^3 m/s at an initial angle of 32° to the horizontal. (a) Negl
    12·2 answers
  • Application of pressure​
    5·1 answer
  •  How many centimeters are there in meter? b. 10 c. d 1000 e. 10000 100 2. A centimeter is equal to 1 inch b.½inch C 1/2.54 inch
    15·1 answer
  • A clarinet sounds as a closed pipe. if a clarinet sounds a note with a pitch of 375 hz, what are the frequencies of the lowest t
    6·1 answer
  • Why would it be hard to find the ideal light intensity if the temperure were very hot or cold?
    7·1 answer
  • How are velocity and displacement related?
    6·1 answer
  • What is the magnification of an object that is 4.15 m in front of a camera that has an image position of 5.0 cm?
    6·1 answer
  • Tuklasin
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!