To develop this problem it is necessary to apply the concepts performed to the absolute pressure based on the reference pressure (atmospheric) and the pressure that is generated due to the height of the column of the measured liquid.
In mathematical terms the previous concept can be expressed as

Where
Atmospheric Pressure
Density
g = Gravitational acceleration
h = Height
Our values are given as

g = 9.8m/s


Replacing we have then that



Therefore the absolute pressure in the test section is 99.9019kPa
Answer:
.
Explanation:
Since no external force is acting on the system.
Therefore, Total energy remains constant before and after.
So, Total energy of system= energy due to potential applied+kinetic energy

(Here v=velocity ,V=potential ,q=charge and m=mass).
Putting values .
We get,
.
At point B charged particle is moving faster as compared to point A.
Hence, it is the required solution.
Okay, I don't know if this question is supposed to be a trick question or not. The weight of the apple does not change as the plane travels up the atmosphere, but the MASS changes. Weight doesn't change no matter what environment you're in, but the mass changes in different environments. In this case, the weight is constant but the mass is decreasing as you go higher up.
Falling from an airplane.
Answer:
The heavier something is, the harder it is to slow down. As such, higher amounts of mass result in a lower rate of slowing.