Answer:

Explanation:
Close to Earth's surface, the force of gravity that pulls an object towards the ground is
(2)
where
m is the mass of the object
g is the acceleration due to gravity, which is
close to Earth's surface
This is an approximation of the general formula of gravity valid only close to Earth's surface. The more general formula is
(1)
where
G is the gravitational constant
M is the Earth's mass
m is the object's mass
r is the distance of the object from Earth's center
At the Earth's surface,
r = R (Earth's radius), and by calling the following factor

we see that eq.(1) becomes eq.(2).
<span>In this demonstration, there is a single compass and a piece of wire that is perpendicular to the plane that the compass sits on. The wire with current flowing through it can alter the direction the compass needle points.</span>
Yes, parallax affects the precision of a measurement that you make. It introduces an error in the order of the parallax. It will cause the measurement to be different from the real answer. Hope this answers the question. Have a nice day.
Answer:
so his far point according to this pair of glass is 200 cm
Explanation:
power of old pair of corrective glasses is given as

now we have



now we know that for normal vision the maximum distance of vision is for infinite distance
so by lens formula we have



so his far point according to this pair of glass is 200 cm
I think that in order for work to be done, the object must move in the direction of the force and move over a distance.