A CH compound is combusted to produce CO2 and H2O
CnHm + O2 -----> CO2 + H2O
Mass of CO2 = 23.1g
Mass of H2O = 10.6g
Calculate by mass of the compounds
For Carbon C, divide by molecular weight of CO2 and multiply with Carbon
molecular weight. So C in grams = 23.1 x (12.01 / 44.01) = 6.3 g C
For Hydrogen H, divide by molecular weight of H2O and multiply with Hydrogen molecular weight. So H in grams = 10.6 x (2.01 / 18.01) = 0.53 g C
= 1.18 of H
Calculate the moles for C and H
6.3 grams of C x (1 mole/12.01 g C) = 0.524 moles of C
1.18 grams of H x (1 mole/1.008 g H) = 1.17 moles of H
Divides by both mole entities with smallest
C = 0.524 / 0.524 = 1 x 4 = 4
H = 1.17 / 0.524 = 2.23 x 4 = 10
The empirical formula is C4H10.
Answer:
One arrow is positioned in each box according to Hund's Rule which tells us to maximise the number of unpaired electrons in orbitals of the same subshell, and, to give those electrons the same "spin" (parallel spin).
Explanation:
Oxidation state of I is (-1) and for CO it is zero. Let's assume that the oxidation state of Fe in Fe(CO)₄I₂<span> (s) is x. For whole compound, the charge is zero.
Sum of oxidation numbers in all elements = Charge of the compound.
Here we have 1Fe , 4CO and 2I
hence we can find the oxidation state as;
x + 4*0 + 2*(-1) = 0
x + 0 - 2 = 0
x = +2
Hence the oxidation state of Fe in product </span>Fe(CO)₄I₂ (s) is +2.
Same as we can find the oxidation state (y) of Fe in Fe(CO)₅(s).
y + 5*0 = 0
y = 0
Since oxidation state of Fe increased from 0 to +2, the oxidized element is Fe in the given reaction.
Either he’s busy, or he is just trying to ignore you.
Need more info tho