Answer:

Explanation:
Hello,
In this case, since the pH defines the concentration of hydrogen:
![pH=-log([H^+])](https://tex.z-dn.net/?f=pH%3D-log%28%5BH%5E%2B%5D%29)
![[H^+]=10^{-pH}=10^{-3.4}=3.98x10^{-4}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-3.4%7D%3D3.98x10%5E%7B-4%7D)
And the percent ionization is:
![\% \ ionization=\frac{[H^+]}{[HA]}*100\%](https://tex.z-dn.net/?f=%5C%25%20%5C%20ionization%3D%5Cfrac%7B%5BH%5E%2B%5D%7D%7B%5BHA%5D%7D%2A100%5C%25)
We compute the concentration of the acid, HA:
![[HA]=\frac{[H^+]}{\% \ ionization}*100\%=\frac{3.98x10^{-4}}{66\%} *100\%\\\\](https://tex.z-dn.net/?f=%5BHA%5D%3D%5Cfrac%7B%5BH%5E%2B%5D%7D%7B%5C%25%20%5C%20ionization%7D%2A100%5C%25%3D%5Cfrac%7B3.98x10%5E%7B-4%7D%7D%7B66%5C%25%7D%20%20%2A100%5C%25%5C%5C%5C%5C)
![[HA]=6.03x10^{-4}](https://tex.z-dn.net/?f=%5BHA%5D%3D6.03x10%5E%7B-4%7D)
Thus, the Ka is:
![Ka=\frac{[H^+][A^-]}{[HA]}=\frac{3.98x10^{-4}*3.98x10^{-4}}{6.03x10^{-4}}\\ \\Ka=2.63x10^{-4}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D%3D%5Cfrac%7B3.98x10%5E%7B-4%7D%2A3.98x10%5E%7B-4%7D%7D%7B6.03x10%5E%7B-4%7D%7D%5C%5C%20%20%5C%5CKa%3D2.63x10%5E%7B-4%7D)
So the pKa is:

Regards.
Answer:
Order of increasing strength of intermolecular attraction:
>
>
> Ar
Explanation:
can form hydrogen bond as H atom is attached with electronegative atom O.
Rest three,
,
, Ar are non-polar molecules.
In non-polar molecules, van der Waal's intermolecular forces of attractions exist. Hydrogen bonding is stronger intermolecular attraction then van der Waal's intermolecular forces of attraction, hence,
has strongest intermolecular attractions.
Ar will have least intermolecular attraction, as it behaves almost as ideal gas and there is no intermolecular attraction exist between molecules of ideal gases.
Molecular size and mass of
is high as compared to
.
van der Waals intermolecular forces of attraction increases with increase in size.
Therefore,
Order of increasing strength of intermolecular attraction will be:
>
>
> Ar
Answer:
iweufweifiwbiepwbewibfpebfbiewfbwefwepbfwbefiwe
Explanation:
Answer: 3.01 x 10^24 atoms
Explanation:
Based on Avogadro's law:
1 mole of any substance has 6.02 x 10^23 atoms
So, 1 mole of water = 6.02 x 10^23 atoms
5 moles of water = Z atoms
To get the value of Z, cross multiply
Z x 1 mole = (6.02 x 10^23 atoms x 5 moles)
Z•mole = 30.1 x 10^23 atoms•mole
Divide both sides by 1 mole
Z•mole/1 mole = 30.1 x 10^23 atoms•mole/ 1 mole
Z = 30.1 x 10^23 atoms
[Place the value of Z in standard form]
Z = 3.01 x 10^24 atoms
Thus, there are 3.01 x 10^24 atoms in 5 mole of water
Answer:
Nitrogen will called as atom or molecule or ion too in the state which it exist means in which form it is present .