The given equality hold true when x = 2.
Put x = 2 in inequality.
2(2) + 3 = 4+3 = 7 = R.H.S.
For x = 4 and 6, L.H.S(2x+3) is greater than 7.
Hence for x = 2, 4 and 6, the above inequality holds true.
Hope this helps!
The numbers that are irrational are B. √72 and D.√23.
<h3>What are irrational numbers?</h3>
Irrational numbers are those that have infinite numbers after the decimal. These numbers are also none repeating.
When the above are solved:
√25 = 5
√144 = 12
√23 = 4.79583152331...
√72 = 8.48528137424...
The only two numbers with non-repeating and infinite numbers are √72 and √23.
Find out more on irrational numbers at brainly.com/question/20400557
#SPJ1
Can you show the table
If the line is going down then it’s negative I was going up it’s positive if the line is constant it’s a constant
The more hours that she read the more pages that she’s able to read
Looks like a badly encoded/decoded symbol. It's supposed to be a minus sign, so you're asked to find the expectation of 2<em>X </em>² - <em>Y</em>.
If you don't know how <em>X</em> or <em>Y</em> are distributed, but you know E[<em>X</em> ²] and E[<em>Y</em>], then it's as simple as distributing the expectation over the sum:
E[2<em>X </em>² - <em>Y</em>] = 2 E[<em>X </em>²] - E[<em>Y</em>]
Or, if you're given the expectation and variance of <em>X</em>, you have
Var[<em>X</em>] = E[<em>X</em> ²] - E[<em>X</em>]²
→ E[2<em>X </em>² - <em>Y</em>] = 2 (Var[<em>X</em>] + E[<em>X</em>]²) - E[<em>Y</em>]
Otherwise, you may be given the density function, or joint density, in which case you can determine the expectations by computing an integral or sum.