I think its [B]
Personally i would say [B] only because If you are looking beyond the car in front of you..... then what if the car in front of you throws on breaks... you would hit them in the butt because you weren't paying attention to the car.
And majority of the time if your looking in the lanes beside you then you are most likely trying to get in that lane.
I think the correct answer from the choices listed above is option B. The very high voltage needed to create a spark across the spark plug is produced at the transformer's secondary winding. <span>The secondary coil is engulfed by a powerful and changing magnetic field. This field induces a current in the coils -- a very high-voltage current.</span>
The conversion factor you use is 100 cm = 1 m.
You can divide 20 by 100 to get the answer.
20 cm/100 cm =.2 m
Hope this helped!
Answer:
The velocity of the wave is 12.5 m/s
Explanation:
The given parameters are;
he frequency of the tuning fork, f = 250 Hz
The distance between successive crests of the wave formed, λ = 5 cm = 0.05 m
The velocity of a wave, v = f × λ
Where;
f = The frequency of the wave
λ = The wavelength of the wave - The distance between crests =
Substituting the known values gives;
v = 250 Hz × 0.05 m = 12.5 m/s
The velocity of the wave, v = 12.5 m/s.
Answer:
a) <em>473.33 nm
</em>
<em>b) 568 nm</em><em> and </em><em>406 nm</em>
<em>c) </em>bluish green and blue
Explanation:
a) As the light traverses the layer of oil it first reflects at the front surface of the oil. Here the index of refraction increases from that of air to that of the oil , so a phase change occurs. The light then reflects from the rear surface of oil. The index of refraction increases from that of the oil to that of the glass , so again a phase change occurs. Thus two phase changes occur.
In thin-film interference with 0 or 2 phase changes, condition for constructive interference is:
2t=mλ/n
So:
λ=
2tn/m
<em><u>For m=1</u></em>
λ=1420 nm
<em><u>For m=2</u></em>
λ=710 nm
<em><u>For m=3</u></em>
λ=473.33 nm
<em><u>For m=4</u></em>
λ=355 nm
<em>Thus the only wavelength in the visible spectrum </em><em>(400 - 700 nm)</em><em> that will give constructive interference is </em><em>473.33 nm
</em>
b)
In thin-film interference with 0 or 2 phase changes, condition for destructive interference is:
2t=(m+1/2)λ/n=(2m+1)*λ/2n
so;
λ=4tn/(2m+1)
<em><u>For m=1</u></em>
λ=946.667 nm
<em><u>For m=2</u></em>
λ=568 nm
<em><u>For m=3</u></em>
λ=405.33 nm
<em><u>For m=4</u></em>
λ=315.56 nm
<em>Thus the wavelengths in the visible spectrum (</em><em>400 to 700 nm)</em><em> that will give destructive interference are </em><em>568 nm</em><em> and </em><em>406 nm</em>
<em>c) </em>The color of reflected light is bluish green since the wavelength is 473.3 nm . We know that the colors of reflected and transmitted light are complimentary to each other.Thus the color of transmitted light is blue (due to the combination of wavelengths 568 nm (green) and 406 nm (deep violet).
<em />