Answer:
The same number of proteins in their nucleus.
Consider the halogenation of ethene is as follows:
CH₂=CH₂(g) + X₂(g) → H₂CX-CH₂X(g)
We can expect that this reaction occurring by breaking of a C=C bond and forming of two C-X bonds.
When bond break it is endothermic and when bond is formed it is exothermic.
So we can calculate the overall enthalpy change as a sum of the required bonds in the products:
Part a)
C=C break = +611 kJ
2 C-F formed = (2 * - 552) = -1104 kJ
Δ H = + 611 - 1104 = - 493 kJ
2C-Cl formed = (2 * -339) = - 678 kJ
ΔH = + 611 - 678 = -67 kJ
2 C-Br formed = (2 * -280) = -560 kJ
ΔH = + 611 - 560 = + 51 kJ
2 C-I Formed = (2 * -209) = -418 kJ
ΔH = + 611 - 418 = + 193 kJ
Part b)
As we can see that the highest exothermic bond formed is C-F bond so from bond energies we can found that addition of fluoride is the most exothermic reaction
Activation energy is the energy needed to begin breaking the bonds of reactants and is denoted as option D.
<h3>What is a Reactant?</h3>
These are the substances which take part in a chemical reaction and result in the formation of the product.
The activation energy is required as it breaks the bonds of the reactant thereby resulting in the product being formed. This therefore makes it the most appropriate choice.
Read more about Activation energy here brainly.com/question/5280701
#SPJ1
Answer:
D.phototropism
Explanation:
Phototropism is a type of tropism in which a plant or plant part responds to light. According to this question, a student wanted to investigate the effect of light on the growth of cress seedlings. The student used three different pots for the experiment.
Pot 1 was placed with light from above. Pot 2 was placed in a cupboard with no light. Pot 3 was placed in a window with light from one direction only. However, the image attached to this question shows that the plants in the different pots face different directions in response to light, which depicts phototropism