Length*width*height=volume of rectangular prism
<h3>There are 189 bacteria in 5 hours</h3><h3>There are 13382588 bacteria in 1 day</h3><h3>There are

bacteria in 1 week</h3>
<em><u>Solution:</u></em>
Given that,
A type of bacteria has a very high exponential growth rate of 80% every hour
There are 10 bacteria
<em><u>The increasing function is given as:</u></em>

Where,
y is future value
a is initial value
r is growth rate
t is time period
From given,
a = 10

<em><u>Determine how many will be in 5 hours</u></em>
Substitute t = 5

y = 189
Thus, there are 189 bacteria in 5 hours
<em><u>Determine how many will be in 1 day ?</u></em>
1 day = 24 hours
Substitute t = 24

Thus, there are 13382588 bacteria in 1 day
<em><u>Determine how many will be in 1 week</u></em>
1 week = 168
Substitute t = 168

Thus there are
bacteria in 1 week
Answer:
3x^5 -2x^4 -x^2 +x -21
Step-by-step explanation:
We need to subtract g(x) from f(x)
f(x) = 3x^5 +6x^2 -5
g(x) = 2x^4 +7x^2 -x+16
f(x) -g(x) = 3x^5 +6x^2 -5 - (2x^4 +7x^2 -x+16)
Distribute the minus sign
3x^5 +6x^2 -5 - 2x^4 -7x^2 +x-16
I like to line them up vertically
3x^5 +6x^2 -5
- 2x^4 -7x^2 +x-16
---------------------------------------
3x^5 -2x^4 -x^2 +x -21
Check the picture below, so the parabola looks more or less like so, hmmm with a vertex at (-1 , -4), so, using those values from the table
![~~~~~~\textit{vertical parabola vertex form} \\\\ y=a(x- h)^2+ k\qquad \begin{cases} \stackrel{vertex}{(h,k)}\\\\ \stackrel{"a"~is~negative}{op ens~\cap}\qquad \stackrel{"a"~is~positive}{op ens~\cup} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=~~~~~~%5Ctextit%7Bvertical%20parabola%20vertex%20form%7D%20%5C%5C%5C%5C%20y%3Da%28x-%20h%29%5E2%2B%20k%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22a%22~is~negative%7D%7Bop%20ens~%5Ccap%7D%5Cqquad%20%5Cstackrel%7B%22a%22~is~positive%7D%7Bop%20ens~%5Ccup%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)
![\stackrel{vertex}{\stackrel{h}{-1}~~,~~\stackrel{k}{-4}}\qquad \implies y=a[x-(-1)]^2-4\implies y=a(x+1)^2-4 \\\\\\ \textit{we also know that} \begin{cases} x=2\\ y=14 \end{cases}\implies 14=a(2+1)^2-4\implies 18=9a \\\\\\ \cfrac{18}{9}=a\implies 2=a~\hspace{10em}\boxed{y=2(x+1)^2-4}](https://tex.z-dn.net/?f=%5Cstackrel%7Bvertex%7D%7B%5Cstackrel%7Bh%7D%7B-1%7D~~%2C~~%5Cstackrel%7Bk%7D%7B-4%7D%7D%5Cqquad%20%5Cimplies%20y%3Da%5Bx-%28-1%29%5D%5E2-4%5Cimplies%20y%3Da%28x%2B1%29%5E2-4%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Bwe%20also%20know%20that%7D%20%5Cbegin%7Bcases%7D%20x%3D2%5C%5C%20y%3D14%20%5Cend%7Bcases%7D%5Cimplies%2014%3Da%282%2B1%29%5E2-4%5Cimplies%2018%3D9a%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B18%7D%7B9%7D%3Da%5Cimplies%202%3Da~%5Chspace%7B10em%7D%5Cboxed%7By%3D2%28x%2B1%29%5E2-4%7D)