Answer:
- <u><em>Displacement</em></u>
Explanation:
To describe the<em> change in position</em> you need to indicate the distance between the final and initial positions and the direction in which you moved. The distance is the magnitude.
The quantities that need both magnitude and direction to be described are named <em>vector quantities</em> or, just, vectors.
<em>The vector quantity that defines both the distance and direction between two positions </em>describes the <em>change in your position</em> and is named displacement. For instance, to indicate how you can goe to the supermarket from your house you cannot just say walk 2 miles. You need to indicate the direction; let's say 2 miles North. In this case, the displacement when you goe from your house to the supermarket is 2 miles North. And it is different of the displacement when you comeback from the supermarket to your house, because it would be 2 miles South.
Answer:
Try B or C if I'm wrong sorry
Explanation:
To solve this problem it is necessary to apply the concepts related to transformers, that is to say passive electrical device that transfers electrical energy from one electrical circuit to one or more circuits.
From the mathematical definition we have that the relationship between the voltage of the first coil and the second coil is proportional to the number of loops of the first and second loop, that is:

Where
input voltage on the primary coil.
input voltage on the secondary coil.
number of turns of wire on the primary coil.
number of turns of wire on the secondary coil.
Replacing our values we have:



Replacing,


From the same relations of number of turns and the voltage of the first and second coil we also have the relation of electricity and voltage whereby:

Where
= Current Primary Coil
= Current secundary Coil
Therefore:



Therefore the maximum values for the secondary coil of the voltage is 410.56V and Current is 1.87A
Answer:

Explanation:
The equation for centripetal acceleration is
.
We know the wheel turns at 45 rpm, which means 0.75 revolutions per second (dividing by 60), so our frequency is f=0.75Hz, which is the inverse of the period T.
Our velocity is the relation between the distance traveled and the time taken, so is the relation between the circumference
and the period T, then we have:

Putting all together:

Answer:
R = 5.73 m
Explanation:
For an angle of rotation through 21 degree we know that
arc length is given as

now we know that
Arc = 2.1 m
Angle = 21 degree

so now we have


