Answer:
1. Define the problem
2. Conduct a literature search
3. Propose a hypothesis
4. Devise an experiment to prove or disprove
5. State conclusions
Explanation: In order to begin an experiment, you must first define a problem or question that you will be answering. Then you must research the problem in order to form a hypothesis, or an educated guess. Then you should devise and execute an experiment to answer your question. The conclusions that you draw will either prove or disprove your hypothesis. Hope this helps!
<h2>~<u>Solution</u> :-</h2>
- Here, to find the atomic mass of element, we must;
We know that,
- 4.6 x $ \sf{10^{22}}$ atoms of an element weigh 13.8g.
Thus,
The atoms of $ \sf{ 6.02 \times 10^{13}}$ will weigh;


- Hence, the molar mass (atomic mass) will be <u>180.6 g.</u>
Kinetic energy is energy that comes from motion. Anything that is currently in motion has kinetic energy.
Let’s look at each example to determine if they have kinetic energy.
First off, a car in the garage: let’s ask ourselves- Is the car in motion?
No, it is sitting in the garage. It is not moving; therefore it doesn’t have any kinetic energy.
Next, a box sitting on a shelf: let’s ask ourselves the same question- Is the box in motion?
No, it is sitting on the shelf. Again, it is not moving. It doesn’t have any kinetic energy.
Our third item is a ball lodged in a tree: again, we will ask ourselves the same question- Is the object moving?
No, it isn’t moving. Again, since it is not moving, it will not have kinetic energy.
Our last item is a frisbee flying through the air: asking ourselves the same question- Is it moving?
Yes, the object is moving. Yes, it has kinetic energy.
The frisbee flying through the air has kinetic energy.