Answer:
C) It will accelerate.
Explanation:
According to Newton’s second law of motion, when an object is acted on by an unbalanced force, it will accelerate.
An unbalanced force will change the speed or direction (or both) of an object. A change in speed and/or direction is acceleration.
A) is wrong. The object will stop moving only if there is a balanced force in the opposite direction.
B) is wrong. The object will decrease speed only if the unbalanced force has a component opposite to the direction of motion.
d) is wrong. The object will increase speed only if the unbalanced force has a component in the direction of motion.
The problem is incomplete. However, there can only be two probable questions for this problem. First, you can be asked the individual partial pressures of each gas. Second, you can be asked the volume occupied by each gas. I can answer both cases for you.
1.
Let's assume ideal gas.
Pressure for N₂: 2 bar*0.4 = 0.8 bar
Pressure for CO₂: 2 bar*0.5 = 1 bar
Pressure for CH₄: 2 bar*0.1 = 0.2 bar
2. For the volume, let's find the total volume first.
V = nRT/P = (1 mol)(8.314 J/mol-K)(30 +273 K)/(2 bar*10⁵ Pa/1 bar)
V = 0.0126 m³
Hence,
Volume for N₂: 0.0126 bar*0.4 = 0.00504 m³
Volume for CO₂: 0.0126*0.5 = 0.0063 m³
Volume for CH₄: 0.0126*0.1 = 0.00126 m³
Answer:
HClO 7.54
Explanation:
Hypochlorous acid (HClO) is a weakest acid because the pKa value of Hypochlorous acid is very high among the options given in the activity. pKa is a method which is used in order to identify the strength of an acid. The higher the value of pKa of a liquid, lower the strength of an acid while lower the value of pKa of chemical, higher the strength of an acid. In the options, HClO2 is a strong acid due to high lower pKa value.
The answer for the following questions is explained below.
Explanation:
The two variables that affect kinetic energy are:
- mass and
- velocity
- velocity - The faster an object moves,the more the kinetic energy it has.
- mass - Kinetic energy increases as mass increases
The kinetic energy of an object depends on both its mass and its velocity
Kinetic energy increases as mass increases
For example,think about rolling a bowling ball and a golf ball down a bowling lane at same velocity
Here,the bowling ball has more mass than the golf ball
Therefore you use more energy to roll the bowling ball than to roll the golf ball
The bowling ball is more likely to knock down the pins because it has more kinetic energy than the golf ball
The properties of a compound are different than the properties of the element that forms it