Let u = the speed of the car at the instant when braking begins.
The braking distance is s = 62.3 m, the acceleration is a = -5.9 m/s², and the braking duration is t = 4.15 s.
Use the formula s = ut + (1/2)at² to obtain
(u m/s)*(4.15 s) + 0.5*(-5.9 m/s²)*(4.5 s)² = (62.3 m)
4.15u = 62.3 + 50.8064 = 113.1064
u = 27.2546 m/s
Let v m/s be the speed with which the car strikes the tree.
Then
v = 27.2546 - 5.9*4.15
= 2.7696 m/s
Answer: 2.77 m/s (nearest hundredth)
Wave speed = frequency * wavelength
Input the numbers into this equation :
Wave speed = 200 * 3
Work it out and you will get the answer :
Wave speed = 600 m/s
In order to answer this, we will set up a simple ratio as such:
1 calorie = 4.184 joules
1 kilocalorie = 1000 calories
1 kilocalorie = 4,184 joules
250 kilocalories = x joules
Cross multiplying the second and third equations, we get:
x joules = 4,184 * 250
250 kilocalories are equivalent to 1,046 kJ
Answer:
0.767m
Explanation:
We are given that the time interval between each droplet is equal.
We are also given that the fourth drop is just dripping from the shower when the first hits the floor.
If they fall at the same time interval and we know that the distance between the shower head and floor are the same, they must therefore fall at the same velocity.
The distance between each drop has to be the same given that they fall at equal time intervals.
Let this distance be x.
We can then partition the entire height of the system into three parts (as shown in the diagram).
Hence, we can say that:
x + x + x = 2.3m
3x = 2.3m
=> x = 2.3/3 = 0.767m
Therefore, at the time the first drop hits the floor, the third drop is only 0.767 m below the shower head.
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC