1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anyanavicka [17]
3 years ago
8

Consider the motion of a 4.00-kg particle that moves with potential energy given by U(x) = + a) Suppose the particle is moving w

ith a speed of 3.00 m/s when it is located at x = 1.00 m. What is the speed of the object when it is located at x = 5.00 m? b) What is the magnitude of the force on the 4.00-kg particle when it is located at x = 5.00 m?
Physics
1 answer:
gtnhenbr [62]3 years ago
8 0

Correct question:

Consider the motion of a 4.00-kg particle that moves with potential energy given by

U(x) = \frac{(2.0 Jm)}{x}+ \frac{(4.0 Jm^2)}{x^2}

a) Suppose the particle is moving with a speed of 3.00 m/s when it is located at x = 1.00 m. What is the speed of the object when it is located at x = 5.00 m?

b) What is the magnitude of the force on the 4.00-kg particle when it is located at x = 5.00 m?

Answer:

a) 3.33 m/s

b) 0.016 N

Explanation:

a) given:

V = 3.00 m/s

x1 = 1.00 m

x = 5.00

u(x) = \frac{-2}{x} + \frac{4}{x^2}

At x = 1.00 m

u(1) = \frac{-2}{1} + \frac{4}{1^2}

= 4J

Kinetic energy = (1/2)mv²

= \frac{1}{2} * 4(3)^2

= 18J

Total energy will be =

4J + 18J = 22J

At x = 5

u(5) = \frac{-2}{5} + \frac{4}{5^2}

= \frac{4-10}{25} = \frac{-6}{25} J

= -0.24J

Kinetic energy =

\frac{1}{2} * 4Vf^2

= 2Vf²

Total energy =

2Vf² - 0.024

Using conservation of energy,

Initial total energy = final total energy

22 = 2Vf² - 0.24

Vf² = (22+0.24) / 2

Vf = \sqrt{frac{22.4}{2}

= 3.33 m/s

b) magnitude of force when x = 5.0m

u(x) = \frac{-2}{x} + \frac{4}{x^2}

\frac{-du(x)}{dx} = \frac{-d}{dx} [\frac{-2}{x}+ \frac{4}{x^2}

= \frac{2}{x^2} - \frac{8}{x^3}

At x = 5.0 m

\frac{2}{5^2} - \frac{8}{5^3}

F = \frac{2}{25} - \frac{8}{125}

= 0.016N

You might be interested in
What kind of radiation is stopped by a piece of paper
Zina [86]
Three types of radioation - Alpha, Beta, Gamma. hope this helps
4 0
3 years ago
Read 2 more answers
When a p-n-p transistor is operated in saturation region, then its ___________<br><br>​
Likurg_2 [28]

Answer:

Base-emitter and Base-collector junctions are forward biased

8 0
3 years ago
Determine the potential difference between the ends of the wire of resistance 5 Ω if 720 C passes through it per minute.
Strike441 [17]

Answer:

The potential difference between the ends of a wire is 60 volts.

Explanation:

It is given that,

Resistance, R = 5 ohms

Charge, q = 720 C

Time, t = 1 min = 60 s

We know that the charge flowing per unit charge is called current in the circuit. It is given by :

I = 12 A

Let V is the potential difference between the ends of a wire. It can be calculated using Ohm's law as :

V = IR

V = 60 Volts

So, the potential difference between the ends of a wire is 60 volts. Hence, this is the required solution.

8 0
3 years ago
if you have a kinetic energy of 1470 J, and you are 60kg mass and 0 m above the ground, what is you velocity?
laiz [17]

Answer:

The 39.

Explanation:

8 0
2 years ago
Read 2 more answers
1500 kg wrecking ball traveling at a speed of 3.5 m/s hits a wall that does not crumble but is pushed back 75 cm. If the wreckin
Rudiy27

Answer:

The size of the force that pushes the wall is 12,250 N.

Explanation:

Given;

mass of the wrecking ball, m = 1500 kg

speed of the wrecking ball, v = 3.5 m/s

distance the ball moved the wall, d = 75 cm = 0.75 m

Apply the principle of work-energy theorem;

Kinetic energy of the wrecking ball = work done by the ball on the wall

¹/₂mv² = F x d

where;

F is the size of the force that pushes the wall

¹/₂mv² = F x d

¹/₂ x 1500 x 3.5² = F x 0.75

9187.5 = 0.75F

F = 9187.5 / 0.75

F = 12,250 N

Therefore, the size of the force that pushes the wall is 12,250 N.

7 0
3 years ago
Other questions:
  • An 1700 kg car is moving to the right at a constant speed of 1.50 m/s. (a) what is the net force on the car
    7·1 answer
  • Imagine a box sitting on a shelf. What forces are acting on the box?
    5·1 answer
  • Speedy Sue, driving at 34.0 m/s, enters a one-lane tunnel. She then observes a slow-moving van 160 m ahead traveling at 5.40 m/s
    6·2 answers
  • What is the speed of sound in air with a temperature of 25 degrees C​
    8·1 answer
  • If a team pulls with a combined force of 4 newtons on an airplace with a mass of 36 kilograms,what is the acceleration of the ai
    7·1 answer
  • A tourist stands at the top of the Grand Canyon, holding a rock, overlooking the valley below. Find the final velocity, and disp
    5·2 answers
  • Average acceleration of an object is the:
    13·1 answer
  • A spring, with a spring constant of 4000 N/m, is oriented horizontally, and compressed by 10cm. When released, the spring launch
    9·1 answer
  • Explain when acceleration remains constant.​
    9·1 answer
  • If 100g of an isotope undergoes two half-lives, how many grams will be remaining?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!