Answer:
Explanation:
Given
mass of lead piece 
mass of water in calorimeter 
Initial temperature of water 
Initial temperature of lead piece 
we know heat capacity of lead and water are
and
respectively
Let us take
be the final temperature of the system
Conserving energy
heat lost by lead=heat gained by water





Explanation:
Let us assume that the separation of plate be equal to d and the area of plates is
. As the capacitance of capacitor is given as follows.
C = 
It is known that the dielectric strength of air is as follows.
E = 
Expression for maximum potential difference is that the capacitor can with stand is as follows.
dV = E × d
And, maximum charge that can be placed on the capacitor is as follows.
Q = CV
= 
= 
= 
= 
or, = 10.62 nC
Thus, we can conclude that charge on capacitor is 10.62 nC.
All the spheres interact with other spheres. For example, rain (hydrosphere) falls from clouds in the atmosphere to the lithosphere and forms streams and rivers that provide drinking water for wildlife and humans as well as water for plant growth (biosphere). ... Flooding rivers wash away soil.
Answer:
The magnitude of the induced electric field at a point 2.5 cm from the axis of the solenoid is 8.8 x 10⁻⁵ V/m
Explanation:
given information:
radius, r = 2.0 cm
N = 700 turns/m
decreasing rate, dI/dt = 9.0 A/s
the magnitude of the induced electric field at a point 2.5 cm (r = 2.5 cm = 0.025 m) from the axis of the solenoid?
the magnetic field at the center of solenoid
B = μ₀nI
where
B = magnetic field (T)
μ₀ = permeability (1.26× 10⁻⁶ T.m/A)
n = the number turn per unit length (turn/m)
I = current (A)
dB/dt = μ₀n dI/dt (1)
now we calculate the induced electric field by using
E =
= 2E/r (2)
where
E = the induced electric field (V/m)
we substitute the firs and second equation, thus
dB/dt = μ₀n dI/dt
2E/r = μ₀n dI/dt
E = (1/2) r μ₀n dI/dt
= (1/2) (0.025) (1.26× 10⁻⁶) (700) (8)
= 8.8 x 10⁻⁵ V/m
The bouyancy force is:
Since the wood-lead system is completely submerged, the bouyancy force
is FB = ĎwgVl + ĎwgVb, where Ďw is the density of water,Vl
is the volume of
the piece of lead and Vb is the volume of the wooden block. The weight of the
combined lead and wooden block is: W = ĎlgVl + ĎbgVb. Since the system is
in equilibrium, the bouyancy force must be equal to the total weight:
ĎwgVl + ĎwgVb = ĎlgVl + ĎbgVb
now we can solve for the volume of lead:
ĎwgVl â’ ĎlgVl = ĎbgVb â’ ĎwgVb
Vl(Ďw â’ Ďl) = Vb(Ďb â’ Ďw)
Vl =
Ďbâ’Ďw
Ďwâ’Ďl
Vb
Now we substitute the values for the density of lead Ďl = 11.3 Ă— 103kg/m3 ,
the density of the wood and the density of water Ďw = 1000kg/m3
. We get:
Vl =
600â’1000
1000â’11300
(0.6m Ă— 0.25m Ă— 0.08m) = 4.66 Ă— 10â’4m3