<span>The number of x-intercepts that appear on the graph of the function
</span>f(x)=(x-6)^2(x+2)^2 is two (2): x=6 (multiplicity 2) and x=-2 (multiplicity 2)
Solution
x-intercepts:
f(x)=0→(x-6)^2 (x+2)^2 =0
Using that: If a . b =0→a=0 or b=0; with a=(x-6)^2 and b=(x+2)^2
(x-6)^2=0
Solving for x. Square root both sides of the equation:
sqrt[ (x-6)^2] = sqrt(0)→x-6=0
Adding 6 both sides of the equation:
x-6+6=0+6→x=6 Multiplicity 2
(x+2)^2=0
Solving for x. Square root both sides of the equation:
sqrt[ (x+2)^2] = sqrt(0)→x+2=0
Subtracting 2 both sides of the equation:
x+2-2=0-2→x=-2 Multiplicity 2
Answer:

Step-by-step explanation:
Your Welcome!
The answer is A(45) = -211
I think that the Equivalent fraction is 6/8
Answer:
I used the function normCdf(lower bound, upper bound, mean, standard deviation) on the graphing calculator to solve this.
- Lower bound = 1914.8
- Upper bound = 999999
- Mean = 1986.1
- Standard deviation = 27.2
Input in these values and it will result in:
normCdf(1914.8,9999999,1986.1,27.2) = 0.995621
So the probability that the value is greater than 1914.8 is about 99.5621%
<u><em>I'm not sure if this is correct </em></u><em>0_o</em>