9.7 x 10^3
It is the same as 3600 + 6100 = 9700 => 9.7 X 10^3
Answer:
20%
Step-by-step explanation:
The percentage change can be found from ...
% change = ((new value)/(reference value) -1) × 100%
= (240/200 -1) × 100%
= 0.20 × 100%
= 20%
240 is an increase of 20% from 200.
Add <span /><span><span><span><span><span><span>12</span></span><span /></span></span><span /></span><span>12</span></span> to both sides
<span /><span><span><span><span><span><span>8</span><span>x</span><span>=</span><span>5</span><span>x</span><span>+</span><span>15</span><span>+</span><span>12</span></span><span /></span></span><span /></span><span>8x=5x+15+12</span></span>
2<span> </span>Simplify <span /><span><span><span><span><span><span>5</span><span>x</span><span>+</span><span>15</span><span>+</span><span>12</span></span><span /></span></span><span /></span><span>5x+15+12</span></span> to <span /><span><span><span><span><span><span>5</span><span>x</span><span>+</span><span>27</span></span><span /></span></span><span /></span><span>5x+27</span></span>
<span /><span><span><span><span><span><span>8</span><span>x</span><span>=</span><span>5</span><span>x</span><span>+</span><span>27</span></span><span /></span></span><span /></span><span>8x=5x+27</span></span>
3<span> </span>Subtract <span /><span><span><span><span><span><span>5</span><span>x</span></span><span /></span></span><span /></span><span>5x</span></span> from both sides
<span /><span><span><span><span><span><span>8</span><span>x</span><span>−</span><span>5</span><span>x</span><span>=</span><span>27</span></span><span /></span></span><span /></span><span>8x−5x=27</span></span>
4<span> </span>Simplify <span /><span><span><span><span><span><span>8</span><span>x</span><span>−</span><span>5</span><span>x</span></span><span /></span></span><span /></span><span>8x−5x</span></span> to <span /><span><span><span><span><span><span>3</span><span>x</span></span><span /></span></span><span /></span><span>3x</span></span>
<span /><span><span><span><span><span><span>3</span><span>x</span><span>=</span><span>27</span></span><span /></span></span><span /></span><span>3x=27</span></span>
5<span> </span>Divide both sides by <span /><span><span><span><span><span><span>3</span></span><span /></span></span><span /></span><span>3</span></span>
<span /><span><span><span><span><span><span>x</span><span>=</span><span><span><span><span>27</span><span /></span><span><span>3</span><span /></span><span><span /><span /></span></span></span></span><span /></span></span><span /></span><span>x=273</span></span>
6<span> </span>Simplify <span /><span><span><span><span><span><span><span><span><span>27</span><span /></span><span><span>3</span><span /></span><span><span /><span /></span></span></span></span><span /></span></span><span /></span><span>273</span></span> to <span /><span><span><span><span><span><span>9</span></span><span /></span></span><span /></span><span>9</span></span>
<span /><span><span><span><span><span><span>x</span><span>=</span><span>9</span></span><span /></span></span><span /></span><span>x=9
</span></span>
Answer:
The volume is changing at a rate given by:

Step-by-step explanation:
Let's recall the formula for the volume of acone, since it is the rate of the cone changing what we need to answer:
Volume of cone = 
where B is the area of the base (a circle of radius R) which equals = 
and where H stands for the cone's height.
We apply the derivative over time operator (
) on both sides of the volume equation, making sure that we apply the rule for the derivative of a product:
