Answer:
The absolute uncertainty is approximately 1.69 × 10⁻³
Explanation:
The volume needed for NaOH needed to make the solution = 16.66 ml
The wt% of the added NaOH = 53.4 wt%
The volume of the NaOH to be prepared = 2.00 L
The concentration of the NaOH to be prepared = 0.169 M
The molar mass of NaOH = 39.997 g/mol
Therefore, 100 g of sample contains 53.4 g of NaOH
The mass of the sample = 16.66 × 1.52 = 25.3232 g
The mass of NaOH in the sample = 0.534 × 25.3232 = 13.5225888 g ≈ 13.52 g
Therefore;
The number of moles of NaOH = 13.52/39.9971 = 0.3381 moles
Therefore, we have 0.3381 moles in 2.00L solution, which gives;
The number of moles per liter = 0.3881/2 = 0.169045 moles/liter
The molarity ≈ 0.169 M
The absolute uncertainty, u(c) is given as follows;
![u(c) = \sqrt{ \left (\dfrac{0.01}{16.66} \right )^2 + \left ( \dfrac{0.4}{53.4} \right )^2 + \left ( \dfrac{0.01}{1.52} \right )^2 } \times 0.169 \approx 1.69 \times 10^{-3}](https://tex.z-dn.net/?f=u%28c%29%20%3D%20%5Csqrt%7B%20%5Cleft%20%28%5Cdfrac%7B0.01%7D%7B16.66%7D%20%5Cright%20%29%5E2%20%2B%20%5Cleft%20%28%20%5Cdfrac%7B0.4%7D%7B53.4%7D%20%5Cright%20%29%5E2%20%2B%20%5Cleft%20%28%20%5Cdfrac%7B0.01%7D%7B1.52%7D%20%5Cright%20%29%5E2%20%7D%20%20%20%5Ctimes%200.169%20%5Capprox%201.69%20%5Ctimes%2010%5E%7B-3%7D)
The absolute uncertainty, u(c) ≈ 1.69 × 10⁻³.