<span>At the exact instant the blue ball reaches maximum height, it is stationary for that millisecond in time before it begins to fall, therefore its speed is zero. (The other factors listed have no effect on the speed at the moment of maximum height.)</span>
Answer:
0.893 rad/s in the clockwise direction
Explanation:
From the law of conservation of angular momentum,
angular momentum before impact = angular momentum after impact
L₁ = L₂
L₁ = angular momentum of bullet = + 9 kgm²/s (it is positive since the bullet tends to rotate in a clockwise direction from left to right)
L₂ = angular momentum of cylinder and angular momentum of bullet after collision.
L₂ = (I₁ + I₂)ω where I₁ = rotational inertia of cylinder = 1/2MR² where M = mass of cylinder = 5 kg and R = radius of cylinder = 2 m, I₂ = rotational inertia of bullet about axis of cylinder after collision = mR² where m = mass of bullet = 0.02 kg and R = radius of cylinder = 2m and ω = angular velocity of system after collision
So,
L₁ = L₂
L₁ = (I₁ + I₂)ω
ω = L₁/(I₁ + I₂)
ω = L₁/(1/2MR² + mR²)
ω = L₁/(1/2M + m)R²
substituting the values of the variables into the equation, we have
ω = L₁/(1/2M + m)R²
ω = + 9 kgm²/s/(1/2 × 5 kg + 0.02 kg)(2 m)²
ω = + 9 kgm²/s/(2.5 kg + 0.02 kg)(4 m²)
ω = + 9 kgm²/s/(2.52 kg)(4 m²)
ω = +9 kgm²/s/10.08 kgm²
ω = + 0.893 rad/s
The angular velocity of the cylinder bullet system is 0.893 rad/s in the clockwise direction-since it is positive.
When Debbie pushes the first cart she is using an applied force. An applied force is created when someone or something pushes another thing using, of course, an applied force. Now, when the second cart is being pushed by the first cart, this is also an applied force. You can tell because the first cart is being pushed using forced and this causes the second cart to be pushed using some of the force that is being transmitted to the first cart.
Debbie exerts applied force on the first cart. The first cart exert applied force on the second cart.
- Marlon Nunez
<span> </span>For any prism-shaped geometry, the volume
(V) is assumed by the product of cross-sectional area (A) and height (h).
<span> V = Ah </span>
<span>
Distinguishing with respect to time gives the
relationship between the rates.
dV/dt = A*dh/dt</span>
<span> in the meantime the area is not altering </span>
<span>
dV/dt = π*(1 ft)^2*(-0.5 ft/min) </span>
<span>
dV/dt = -π/2 ft^3/min ≈ -1.571 ft^3/min
Water is draining from the tank at the rate of π/2
ft^3/min.</span>
Answer:
speed = 3600 kilometers per hour
= 3600 km/h
speed = 1000 meters per second
= 1000 m/s
Answer From Gauth Math