Answer:
Explanation:
Current, I = 6 A
diameter of wire, d = 2.05 mm
number of electrons per unit volume, n = 8.5 x 10^28
If the diameter is doubled,
The resistance of the wire is inversely proportional to the square of the diameter of the wire, so the resistance is one forth an the current is directly proportional to the diameter of the wire so the current is four times the initial value.
Answer:
The magnitude of the net force is √2F.
Explanation:
Since the two particles have the same charge Q, they exert the same force on the test charge; both attractive or repulsive. So, the angle between the two forces is 90° in any case. Now, as we know the magnitude of these forces and that they form a 90° angle, we can use the Pythagorean Theorem to calculate the magnitude of the resultant net force:

Then, it means that the net force acting on the test charge has a magnitude of √2F.
Answer:
Answer is It was deduced from the rate at which it glimmers.
Refer below.
Explanation:
The X-ray source Cygnus X-1 has a mass of at least 11 solar masses and a diameter of only about one-quarter the diameter of the Earth. With such a small diameter it must be a compact object, and with such a large mass it can't be a white dwarf or a neutron star, so a black hole is the only possibility remaining. The diameter of Cygnus X-1 found:
It was deduced from the rate at which it glimmers.
Answer: FALSE
Explanation: Could you help me with a question?
Answer:
<h2>Ultraviolet Waves.</h2>
Explanation:
The Sun emits waves called "Solar Waves", which have a wavelengths between 160 and 400 nanometers. According to the electromagnetic spectrum, these waves are defined as Ultraviolet, which have a frequency around the order of
, which is really intense and high energy.
Therefore, the answer is Ultraviolet Waves.