Answer:
This approach to (0,0) also gives the value 0
Step-by-step explanation:
Probably, you are trying to decide whether this limit exists or not. If you approach through the parabola y=x², you get

It does not matter if x>0 or x<0, the |x| on the denominator will cancel out with an x on the numerator, and you will get the term x²/(√(1+x²) which tends to 0.
If you want to prove that the limit doesn't exist, you have to approach through another curve and get a value different from zero.
However, in this case, the limit exists and its equal to zero. One way of doing this is to change to polar coordinates and doing a calculation similar to this one. Polar coordinates x=rcosФ, y=rsinФ work because the limit will only depend on r, no matter the approach curve.
Step-by-step explanation:
sin(2x) + cos(3x)
Use double angle formula sin(2x) = 2 sin x cos x.
Use triple angle formula cos(3x) = 4 cos³x − 3 cos x.
Substitute:
2 sin x cos x + 4 cos³x − 3 cos x
The answer is correct
but I think in step 2 that should read the Associative property
Answer:
$24
Step-by-step explanation:
64/16 = 4
4x6 = 24