Answer:
C. 21 Joules
Explanation:
We apply the formula to calculate the potential energy (Ep):
Ep=m*g*h
Where:
Ep : potential energy in Joules (J)
m :mass in kilograms (kg)
g acceleration due to gravity (m/s²)
h: height in meters (m)
Calculation of the height (h)
Ep = m*g*h
7 = (1.5 )*(9.8) *(h
)
7 = (14.7) (h
)
h = 7 / (14.7)
h= 0.476 m
Gravitational potential energy of the second object
Ep = m*g*h
Ep = (4.5 )*(9.8) *(0.476
)
Ep = (4.5 )*(9.8) *(0.476
)
Ep = 21 J
Answer:
The pressure corresponding to the absolute zero temperature is 0.997atm.
Explanation:
To solve this question, you draw a straight vertical line with the boiling point temperature and pressure on top of the line and the freezing point temperature and pressure on the lower part. The absolute temperature somewhere in the middle of the line with the pressure to be obtained.
So, we have;
0- (-19) / 100 - (-19) = P - 0.9267 / 1.366 - 0.9267
19 / 119 = P - 0.9267 / 0.4393
Cross multiply, we have
19 * 0.4393 = 119(P -0.9267)
8.3467 = 119P - 110.2773
119P = 118.624
P = 0.997 atm
So at 0°C, the pressure of the thermometer is 0.997atm.
Answer:
distance = 6 m
Explanation:
- Distance is a scalar quantity (so, only magnitude, no direction), and it is calculated as the scalar sum of all the distances travelled by an object during its motion, regardless of the direction. So, in this problem, the distance covered by the pinecone is
d = 4 m + 2 m = 6 m
- Displacement is a vector quantity (magnitude+direction), and its magnitude is calculate as the distance in a straight line between the final position and the initial position of the object. In this case, the final position is 2 m west and the initial position is 0 m, so the displacement of the pinecone is
d = 2 m west - 0 m = 2 m west
So, a scalar quantity from this scenario is
distance = 6 m
Explanation:
They speed up, slow down, or change direction.