1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
castortr0y [4]
3 years ago
10

Certain insects can achieve seemingly impossible accelerations while jumping. the click beetle accelerates at an astonishing 400

g over a distance of 0.52 cm as it rapidly bends its thorax, making the "click" that gives it its name. part a assuming the beetle jumps straight up, at what speed does it leave the ground? part b how much time is required for the beetle to reach this speed? part c ignoring air resistance, how high would it go?
Physics
1 answer:
hichkok12 [17]3 years ago
7 0

(a) The launching velocity of the beetle is 6.4 m/s

(b) The time taken to achieve the speed for launch is 1.63 ms

(c) The beetle reaches a height of 2.1 m.

(a) The beetle starts from rest and accelerates with an upward acceleration of 400 g and reaches its launching speed in a distance 0.53 cm. Here g is the acceleration due to gravity.

Use the equation of motion,

v^2=u^2+2as

Here, the initial velocity of the beetle is u, its final velocity is v, the acceleration of the beetle is a, and the beetle accelerates over a distance s.

Substitute 0 m/s for u, 400 g for a, 9.8 m/s² for g and 0.52×10⁻²m for s.

v^2=u^2+2as\\ = (0 m/s)^2+2 (400)(9.8 m/s^2)(0.52*10^-^2 m)\\ =40.768 (m/s)^2\\ v=6.385 m/s

The launching speed of the beetle is <u>6.4 m/s</u>.

(b) To determine the time t taken by the beetle for launching itself upwards is determined by using the equation of motion,

v=u+at

Substitute 0 m/s for u, 400 g for a, 9.8 m/s² for g and 6.385 m/s for v.

v=u+at\\ 6.385 m/s = (0 m/s) +400(9.8 m/s^2)t\\ t = \frac{6.385 m/s}{3920 m/s^2} = 1.63*10^-^3s=1.63 ms

The time taken by the beetle to launch itself upwards is <u>1.62 ms</u>.

(c) After the beetle launches itself upwards, it is acted upon by the earth's gravitational force, which pulls it downwards towards the earth with an acceleration equal to the acceleration due to gravity g. Its velocity reduces and when it reaches the maximum height in its path upwards, its final velocity becomes equal to zero.

Use the equation of motion,

v^2=u^2+2as

Substitute 6.385 m/s for u, -9.8 m/s² for g and 0 m/s for v.

v^2=u^2+2as\\ (0m/s)^2=(6.385 m/s)^2+2(-9.8m/s^2)s\\ s=\frac{(6.385 m/s)^2}{2(9.8m/s^2)} =2.08 m

The beetle can jump to a height of <u>2.1 m</u>



You might be interested in
How many significant figures does the following number have: 0.002040?
ANTONII [103]

Answer: 4

Explanation: because 0s aren’t significant and after the decimal point, there was to be a value greater than 0 than the rest are sig figs.

5 0
2 years ago
Two identical cylindrical vessels with their bases at the same level each contain a liquid of density 1.23 g/cm3. The area of ea
motikmotik

Explanation:

Work done by gravity is given by the formula,

           W = \rho A (h_{1} - h)g (h - h_{2}) ......... (1)

It is known that when levels are same then height of the liquid is as follows.

           h = \frac{h_{1} + h_{2}}{2} ......... (2)

Putting value of equation (2) in equation (1) the overall formula will be as follows.

       W = \frac{1}{4} \rho gA(h_{1} - h_{2})^{2})

           = \frac{1}{4} \times 1.23 g/cm^{3} \times 9.80 m/s^{2} \times 3.89 \times 10^{-4} m^{2}(1.76 m - 0.993 m)^{2})

           = 0.689 J

Thus, we can conclude that the work done by the gravitational force in equalizing the levels when the two vessels are connected is 0.689 J.

3 0
3 years ago
The bigclaw snapping shrimp shown in (Figure 1) is aptly named--it has one big claw that snaps shut with remarkable speed. The p
leva [86]

1) 1.86\cdot 10^6 rad/s^2

2) 2418 rad/s

3) 27000 m/s^2

4) 36.3 m/s

Explanation:

1)

The angular acceleration of an object in rotation is the rate of change of angular velocity.

It can be calculated using the following suvat equation for angular motion:

\theta=\omega_i t +\frac{1}{2}\alpha t^2

where:

\theta is the angular displacement

\omega_i is the initial angular velocity

t is the time

\alpha is the angular acceleration

In this problem we have:

\theta=90^{\circ} = \frac{\pi}{2}rad is the angular displacement

t = 1.3 ms = 0.0013 s is the time elapsed

\omega_i = 0 is the initial angular velocity

Solving for \alpha, we find:

\alpha = \frac{2(\theta-\omega_i t)}{t^2}=\frac{2(\pi/2)-0}{0.0013}=1.86\cdot 10^6 rad/s^2

2)

For an object in accelerated rotational motion, the final angular speed can be found by using another suvat equation:

\omega_f = \omega_i + \alpha t

where

\omega_i is the initial angular velocity

t is the time

\alpha is the angular acceleration

In this problem we have:

t = 1.3 ms = 0.0013 s is the time elapsed

\omega_i = 0 is the initial angular velocity

\alpha = 1.86\cdot 10^6 rad/s is the angular acceleration

Therefore, the final angular speed is:

\omega_f = 0 + (1.86\cdot 10^6)(0.0013)=2418 rad/s

3)

The tangential acceleration is related to the angular acceleration by the following formula:

a_t = \alpha r

where

a_t is the tangential acceleration

\alpha is the angular acceleration

r is the distance of the point from the centre of rotation

Here we want to find the tangential acceleration of the tip of the claw, so:

\alpha = 1.86\cdot 10^6 rad/s is the angular acceleration

r = 1.5 cm = 0.015 m is the distance of the tip of the claw from the axis of rotation

Substituting,

a_t=(1.86\cdot 10^6)(0.015)=27900 m/s^2

4)

Since the tip of the claw is moving by uniformly accelerated motion, we can find its final speed using the suvat equation:

v=u+at

where

u is the initial linear speed

a is the tangential acceleration

t is the time elapsed

Here we have:

a=27900 m/s^2 (tangential acceleration)

u = 0 m/s (it starts from rest)

t = 1.3 ms = 0.0013 s is the time elapsed

Substituting,

v=0+(27900)(0.0013)=36.3 m/s

5 0
3 years ago
Which are characteristics of light? Check all that apply
Schach [20]

Answer:

wavelength, frequency, energy and speed

Explanation:

7 0
2 years ago
You are camping in the breathtaking mountains if Colorado. You spy an unopened diet soda can floating motionless below the surfa
Pavel [41]

Answer:

C. Up, equal to the can's weight

Explanation:

You are camping in the breathtaking mountains if Colorado. You spy an unopened diet soda can floating motionless below the surface of a lake. What is the direction and amount of force the water exerts on it?

A. Zero

B. Down, equal to the can's weight

C. Up, equal to the can's weight

D. Not enough information is given

from the principle of flotation which states that a

When a body displaces a weight of water equal to its own weight, it floats. : A floating object displaces a weight of fluid equal to its own weight. ... Archimedes' principle equates the buoyant force to the weight of the fluid displaced.

the upthrust (this is the upward vertical force exerted on an object in fluid)in the water equals the weight of the body in water it floats.

7 0
2 years ago
Other questions:
  • A ball rolling across the floor at a velocity of 6.15 m/s [E] slows to rest in 1.00 minute. The
    6·1 answer
  • Motion can be detected by using background objects that are not moving called_______________ points
    15·1 answer
  • A laser emits a cylindrical beam of light 2.3 mm in diameter. The average power of the laser is 2.4 mW . The laser shines its li
    15·1 answer
  • How long does it take to raise the temperature of the air in a good-sized living room (3.00m×5.00m×8.00m) by 10.0∘C? Note that t
    10·1 answer
  • A solid metal can absorb heat from another object through which method of heat transfer?
    9·2 answers
  • What happens to a hockey puck when a net force of 5 N acts on it? a It accelerates. b It remains at rest. c It increases in mass
    15·2 answers
  • The fact that desert sand is very hot in the day and very cold at night is evidence that sand has
    7·2 answers
  • FILL IN THE BLANK.<br><br> The __________ of a vector is represented by the length of the arrow.
    10·1 answer
  • A car is moving with a velocity of45m/s. Is brought to rest in 5s.the distance travelled by car before it comes to rest is
    7·1 answer
  • 1. What makes a compound a base?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!