1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
castortr0y [4]
3 years ago
10

Certain insects can achieve seemingly impossible accelerations while jumping. the click beetle accelerates at an astonishing 400

g over a distance of 0.52 cm as it rapidly bends its thorax, making the "click" that gives it its name. part a assuming the beetle jumps straight up, at what speed does it leave the ground? part b how much time is required for the beetle to reach this speed? part c ignoring air resistance, how high would it go?
Physics
1 answer:
hichkok12 [17]3 years ago
7 0

(a) The launching velocity of the beetle is 6.4 m/s

(b) The time taken to achieve the speed for launch is 1.63 ms

(c) The beetle reaches a height of 2.1 m.

(a) The beetle starts from rest and accelerates with an upward acceleration of 400 g and reaches its launching speed in a distance 0.53 cm. Here g is the acceleration due to gravity.

Use the equation of motion,

v^2=u^2+2as

Here, the initial velocity of the beetle is u, its final velocity is v, the acceleration of the beetle is a, and the beetle accelerates over a distance s.

Substitute 0 m/s for u, 400 g for a, 9.8 m/s² for g and 0.52×10⁻²m for s.

v^2=u^2+2as\\ = (0 m/s)^2+2 (400)(9.8 m/s^2)(0.52*10^-^2 m)\\ =40.768 (m/s)^2\\ v=6.385 m/s

The launching speed of the beetle is <u>6.4 m/s</u>.

(b) To determine the time t taken by the beetle for launching itself upwards is determined by using the equation of motion,

v=u+at

Substitute 0 m/s for u, 400 g for a, 9.8 m/s² for g and 6.385 m/s for v.

v=u+at\\ 6.385 m/s = (0 m/s) +400(9.8 m/s^2)t\\ t = \frac{6.385 m/s}{3920 m/s^2} = 1.63*10^-^3s=1.63 ms

The time taken by the beetle to launch itself upwards is <u>1.62 ms</u>.

(c) After the beetle launches itself upwards, it is acted upon by the earth's gravitational force, which pulls it downwards towards the earth with an acceleration equal to the acceleration due to gravity g. Its velocity reduces and when it reaches the maximum height in its path upwards, its final velocity becomes equal to zero.

Use the equation of motion,

v^2=u^2+2as

Substitute 6.385 m/s for u, -9.8 m/s² for g and 0 m/s for v.

v^2=u^2+2as\\ (0m/s)^2=(6.385 m/s)^2+2(-9.8m/s^2)s\\ s=\frac{(6.385 m/s)^2}{2(9.8m/s^2)} =2.08 m

The beetle can jump to a height of <u>2.1 m</u>



You might be interested in
How small are the wavelengths of gamma ray radiation?
WARRIOR [948]

Gamma rays are the highest energy EM radiation and typically have energies greater than 100 keV, frequencies greater than 1019 Hz, and wavelengths less than 10 picometers.

3 0
3 years ago
A 0.5 kg stone is raised from 1m to 2m height from the ground. what is the change in potential energy of the stone?
Usimov [2.4K]

Given: The mass of stone (m) = 0.5 kg

Raised from heights (h₁) = 1.0 m to (h₂) = 2.0 m

Acceleration due to gravity (g) = 9.8 m/s²

To find: The change in potential energy of the stone

Formula: The potential energy (P) = mgh

where, all alphabets are in their usual meanings.

Now, we shall calculate the change in potential energy of the stone

Δ P = P₂ - P₁ = mg (h₂ - h₁)

or,                = 0.5 kg ×9.8 m/s² ×(2.0 m - 1.0 m)

or,                = 4.9 J

Hence, the required change in the potential energy of the stone will be 4.9 J

4 0
3 years ago
A ship travels with velocity given by 12, with current flowing in the direction given by 11 with respect to some co-ordinate axe
nataly862011 [7]

Answer:

v_x = 11.78 m/s

Explanation:

Velocity of the ship is given as

v = 12 units

the direction of the velocity of the ship is making an angle of 11 degree with the current

so we will have two components of the velocity

1) along the direction of the current

2) perpendicular to the direction of the current

so here we know that the component of the ship velocity along the direction of the current is given as

v_x = v cos\theta

v_x = 12 cos11

v_x = 11.78 m/s

7 0
3 years ago
PLEASE HELP!!!!!!!! NEED DONE SOON!!!
zhannawk [14.2K]

Answer:

the object is decelerating

4 0
3 years ago
Read 2 more answers
A spring 1.50 m long with force constant 448 N/m is hung from the ceiling of an elevator, and a block of mass 10.9 kg is attache
GuDViN [60]

Answer:

Explanation:

Let the extension in the spring be x .

restoring force = weight of block

kx = mg

x = \frac{10.9\times9.8}{448}

= 23.84 cm

b )

When the elevator is going upwards

Restoring force = mg + ma

k x₁ = 10.9 ( 9.8 + 1.89 )

x₁ = 28.44 cm

( y coordinate will  be - ( 28.44 - 23.84 ) = - 4.6 cm )

c ) When the cable snaps , both elevator and block undergo free fall . In this case apparent g = 0

Since the spring is stretched by 28.44 cm , a restoring force continues to act on the block which is equal to

.2844 x 448

= 127.41 N

So a net acceleration a will act on the block

a = 127.41 / 10.9

= 11.68 m / s²

The block will undergo SHM with amplitude equal to 28.44 cm .

3 0
3 years ago
Other questions:
  • The mass of an object is independent of its location. true or false
    8·1 answer
  • An example of hydro energy is
    10·1 answer
  • If an electronic circuit experiences a loss of 3 decibels with an input power of 6 watts, what would its output power be, to the
    9·2 answers
  • If the gravitational forces exist between all objects in the universe why aren't people affected by the gravitational force exer
    9·1 answer
  • 3. What conclusion would you draw if a seismogram from a particular seismic station showed only P waves?
    10·1 answer
  • A 2-column table with 5 rows. The first column titled metal has entries aluminum, cork, iron, lead, wax. The second column title
    8·2 answers
  • If the mirror reflection coefficients for a laser resonator of length 5 m are 98.5% and 60%, and there are no losses, determine
    6·2 answers
  • What does sound need to travel?​
    12·2 answers
  • Two particles of a gas collide. Why is this considered an elastic collision? (1 point)
    13·2 answers
  • C1=4F, C2=4F, C3=2F, C4=4F, C5= 9.2 F. Calculate the equivalent capacitance
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!