Answer:
(a). The speed at the moment of being thrown is 30.41 m/s.
(b). The maximum height is 47.18 m.
Explanation:
Given that,
Weight of stone = 3.00 N
Height = 15 m
Speed = 25.0 m/s
(a). We need to calculate the speed at the moment of being thrown
Using work energy theorem


Put the value into the formula





(b). We need to calculate the maximum height
Using work energy theorem
![[tex]W=\dfrac{1}{2}mv_{2}^2-\dfrac{1}{2}mv_{1}^2](https://tex.z-dn.net/?f=%5Btex%5DW%3D%5Cdfrac%7B1%7D%7B2%7Dmv_%7B2%7D%5E2-%5Cdfrac%7B1%7D%7B2%7Dmv_%7B1%7D%5E2)

Here,
=0


Put the value into the formula


Hence, (a). The speed at the moment of being thrown is 30.41 m/s.
(b). The maximum height is 47.18 m.
The question is not complete
Atoms of the same element having equal numbers of protons, but different numbers of neutrons is called isotope.
Answer:
Explanation:
Electric field between plates of a parallel plate capacitor is uniform .
In a uniform electric field , relation between electric field and potential gradient is as follows
electric field = potential gradient [ E = - dV / dl ]
in the given case ,
dV = 51 V ,
dl = 4 cm
= 4 x 10⁻² m
E = 51 / 4 x 10⁻²
= 12.75 x 10² V / m
= 1275 V / m
Answer:
Yes, but only if it's sunny.
Explanation:
As you know, solar panels generate energy through the sun's rays of light (better known as sunlight). Therefore, as long as the sun is shining high in the sky, the car will generate electricity and be able to function. If this vehicle was only powered by solar panels, it would not function during the night, in cloudy areas, and/or in dark places (such as parking garages or home garages).
Hope this helps!