Because of the location of Mg on the periodic table.
Answer:
The potential difference between the plates is 
Explanation:
Given that,
Distance = 1.4 mm
Electric field strength 
Let the potential difference is V.
We need to calculate the potential difference between the plates
Using formula of electric field


Where, V = potential
d = distance
Put the value into the formula


Hence, The potential difference between the plates is 
Answer 1) The electric field at distance r from the thread is radial and has magnitude
E = λ / (2 π ε° r)
The electric field from the point charge usually is observed to follow coulomb's law:
E = Q / (4 π ε°
)
Now, adding the two field vectors:
= {2.5 / (22 π ε° X 0.07 ) ; 0}
Answer 2)
= {2.3 / (4 2 π ε°) ( - 7/ (√(84); -12 / (√84))
Adding these two vectors will give the length which is magnitude of the combined field.
The y-component / x-component gives the tangent of the angle with the positive x-axes.
Please refer the graph and the attachment for better understanding.
Answer:
The height is 
A circular hoop of different diameter cannot be released from a height 30cm and match the sphere speed because from the conservation relation the speed of the hoop is independent of the radius (Hence also the diameter )
Explanation:
From the question we are told that
The height is 
The angle of the slope is 
According to the law of conservation of energy
The potential energy of the sphere at the top of the slope = Rotational kinetic energy + the linear kinetic energy

Where I is the moment of inertia which is mathematically represented as this for a sphere

The angular velocity
is mathematically represented as

So the equation for conservation of energy becomes
![mgh_s = \frac{1}{2} [\frac{2}{5} mr^2 ][\frac{v}{r} ]^2 + \frac{1}{2}mv^2](https://tex.z-dn.net/?f=mgh_s%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5B%5Cfrac%7B2%7D%7B5%7D%20mr%5E2%20%5D%5B%5Cfrac%7Bv%7D%7Br%7D%20%5D%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7Dmv%5E2)
![mgh_s = \frac{1}{2} mv^2 [\frac{2}{5} +1 ]](https://tex.z-dn.net/?f=mgh_s%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20mv%5E2%20%5B%5Cfrac%7B2%7D%7B5%7D%20%2B1%20%5D)
![mgh_s = \frac{1}{2} mv^2 [\frac{7}{5} ]](https://tex.z-dn.net/?f=mgh_s%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20mv%5E2%20%5B%5Cfrac%7B7%7D%7B5%7D%20%5D)
![gh_s =[\frac{7}{10} ] v^2](https://tex.z-dn.net/?f=gh_s%20%3D%5B%5Cfrac%7B7%7D%7B10%7D%20%5D%20v%5E2)

Considering a circular hoop
The moment of inertial is different for circle and it is mathematically represented as

Substituting this into the conservation equation above
![mgh_c = \frac{1}{2} (mr^2)[\frac{v}{r} ] ^2 + \frac{1}{2} mv^2](https://tex.z-dn.net/?f=mgh_c%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%28mr%5E2%29%5B%5Cfrac%7Bv%7D%7Br%7D%20%5D%20%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20mv%5E2)
Where
is the height where the circular hoop would be released to equal the speed of the sphere at the bottom



Recall that 


Substituting values

Answer:
What is a Free Body Diagram?
The free body diagram helps you understand and solve static and dynamic problem involving forces. It is a diagram including all forces acting on a given object without the other object in the system. You need to first understand all the forces acting on the object and then represent these force by arrows in the direction of the force to be drawn.
Explanation: