Explanation:
that u know right .........................
Answer:
a. The second run will be faster.
d. The second run has twice the surface area.
Explanation:
The rate of a reaction is proportional to the surface area of a catalyst. Given the volume (V) of a sphere, we can find its surface area (A) using the following expression.

The area of the 10.0 cm³-sphere is:

The area of each 1.25 cm³-sphere is:

The total area of the 8 1.25cm³-spheres is 8 × 5.61 cm² = 44.9 cm²
The ratio of 8 1.25cm³-sphere to 10.0 cm³-sphere is 44.9 cm²/22.4 cm² = 2.00
Since the surface area is doubled, the second run will be faster.
Answer:
1. B, D,
2.A, F
Explanation:
1. According to the law of conservation of mass, In a course of chemical reaction, matter can neither be created nor destroyed but can be changed from one form to another. This means the amount of matter at the begining and ending of a reaction must be thesame.
2. Chemical reaction is not easily reversible. when gas is produced, provided the reaction system is an open system, the gas cannot be recovered and the reactants cannot be recovered from the products. likewise color change are attributed to chemical reaction
Nuclear reactions happen inside the nucleus,so it changes the protons and neutrons
The question is incomplete . The complete question is :
100 mg of an unknown protein are dissolved in enough solvent to make 5.00mL of solution. The osmotic pressure of this solution is measured to be 0.107atm at 25.0°C. Calculate the molar mass of the protein. Round your answer to 3 significant digits.
Answer: The molar mass of the protein is 
Explanation:


where,
= osmotic pressure of the solution = 0.107 atm
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (protein) = 100 mg = 0.1 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 5.00 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:


Hence, the molar mass of the protein is 