Answer:
The correct answer is option D.
Explanation:
When a chemical reaction proceeds the reactants are converted into products. The energy hill represents the potential energy of the reaction.
There are two conditions: If the reaction is endothermic than the energy of the products is greater than the energy of the reactants and ΔH is positive. This energy gain is shown in the form of a peak. In an exothermic reaction, the energy of the products is lower than the reactants and ΔH is negative.
So the suitable option is D which states that the reaction is endothermic and the potential energy gained by the products is higher when a reaction proceeds.
I think the answer is force
Answer: HBr has the lowest rate of effusion at a given temperature.
Explanation: The effusion rate usually increases with increase in temperature because the kinetic energy of the gaseous molecules increases. But it was not true for gases having heavier mass. This was explained by Graham's Law.
Graham's Law states that the rate of effusion of a gas is inversely proportional to the square root of its molecular weight.

We are given different gases with different Molecular masses. The gas having larger Molecular mass will have the lowest rate of effusion.
Mol. Mass of
= 80 g/mol
Mol. Mass of
= 16 g/mol
Mol. Mass of
= 17 g/mol
Mol. Mass of HBr = 81 g/mol
Mol. Mass of HCl = 36 g/mol
As, Mol. mass of HBr is the highest, so its rate of effusion will be the lowest.
Answer:
who knows why they could be or not or maybe they girl crocs and just got there nails done