NaH(s)+ H2O (l)=>NaOH(aq)+H2(g)
You want to calculate the mass of NaH, I assume. Otherwise, the question isn't clear. It simply says calculate the mass(??)
So, calculate the moles of H2 gas that satisfy the conditions of 982 ml at 28ºC and 765 torr. But you must subtract the vapor pressure of water at 28º to get the actual pressure of the H2 gas. So, the actual conditions are 982 ml (0.982 L) and 301 K and 765-28 = 737 torr.
PV = nRT
n = PV/RT = (737 torr)(0.982 L)/(62.4 L-torr/Kmol)(301 K)
n = 0.0385 moles H2
moles NaH needed = 0.0385 moles H2 x 1 mole NaH/mole H2 = 0.0385 moles NaH required
mass of NaH needed = 0.0385 moles x 24 g/mole = 0.925 g NaH
Brainliest Please :)
I would say compression or the absence of heat because heating a liquid makes it a gas<span />
Explanation:
Both cohesion and molecular interchange contribute to liquid viscosity. The impact of increasing the temperature of a liquid is to reduce the cohesive forces while simultaneously increasing the rate of molecular interchange. The former effect causes a decrease in the shear stress while the latter causes it to increase.
temperature?
The viscosity of liquids decreases rapidly with an increase in temperature, and the viscosity of gases increases with an increase in temperature. Thus, upon heating, liquids flow more easily, whereas gases flow more sluggishly.
mark as brainliest
Answer:
sun
Explanation:
because all plants use energy from the sun to make food and grow
The correct answer is Be+
That is because it lost a single electron but still has the same number of protons, and thus the effective charge attracting each electron is greater, which in turn makes the radius even smaller