Answer:
6.4 g BaSO₄
Explanation:
You have been given the molarity and the volume of the solution. To find the mass of the solution, you need to (1) find the moles BaSO₄ (via the molarity ratio) and then (2) convert moles BaSO₄ to grams BaSO₄ (via the molar mass). It is important to arrange the conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 2 sig figs to reflect the sig figs of the given values.
Molarity (mol/L) = moles / volume (L)
(Step 1)
55 mL / 1,000 = 0.055 L
Molarity = moles / volume <----- Molarity ratio
0.5 (mol/L) = moles / 0.055 L <----- Insert values
0.0275 = moles <----- Multiply both sides by 0.055
(Step 2)
Molar Mass (BaSO₄): 137.33 g/mol + 32.065 g/mol + 4(15.998 g/mol)
Molar Mass (BaSO₄): 233.387 g/mol
0.0275 moles BaSO₄ 233.387 g
--------------------------------- x ------------------- = 6.4 g BaSO₄
1 mole
Dehydration is removal of water.
In alcohols dehydration is α-β elimination or 1,2 elimination, it means the hydroxyl group will be removed from α-carbon while the hydrogen will be removed from near by carbon.
In case of neopentyl alcohol there is no β hydrogen present on the β carbon [as shown in figure].
The only possible way for it to undergo dehydration is by rearrangement.
The process or mechanism can be understood as:
so the chief product is 2-methylbut-2-ene
Answer: The mole ratio of sodium to sodium chloride 2:2.
Explanation:
As the given reaction equation is as follows.

Here, 2 moles of sodium reacts with 1 mole of
and leads to the formation of 2 moles of NaCl.
This means that 2 moles of sodium gives 2 moles of NaCl on reaction with chlorine.
Hence, the ratio of moles of sodium to sodium chloride is 2:2.
Thus, we can conclude that the mole ratio of sodium to sodium chloride 2:2.
Answer:
why did you post a link to brainly when we are on brainly already??????
Explanation: