Answer:
The equilibrium constant Kc = [Fe]²*[H2O]³ / [Fe2O3][H2]³
Explanation:
Step 1: Data given
For the reaction aA + bB ⇆ cC + dD
the equilibrium constant Kc = [C]^c * [D]^d/[B]^b*[A]^a
Step 2: The balanced equation
Fe2O3(s) + 3H2(g) --> 2Fe(s) + 3H2O(g)
Step 3: Calculate the equilibrium constant Kc
Kc = [C]^c * [D]^d/[B]^b*[A]^a
⇒with [C] = [Fe]
⇒ with c = 2
⇒with [D] = [H2O]
⇒with d = 3
⇒with [A] = [Fe2O3]
⇒with a = 1
⇒with [B] = [H2]
⇒with b = 3
Kc = [C]^c * [D]^d/[B]^b*[A]^a
Kc = [Fe]²*[H2O]³ / [Fe2O3][H2]³
The equilibrium constant Kc = [Fe]²*[H2O]³ / [Fe2O3][H2]³
Covalent bonds are shown in the left part of row 1 while ionic ones on the right side
Answer:
1.4e+8 bismuth atoms
Explanation:
If 10³ mm = 10¹² pm
then 44 mm = X pm
X = (44 × 10¹²) / 10³ = 44 × 10⁹ pm (which is the cookie diameter in picometers)
Now we can calculate the number of bismuth atoms needed to span the diameter of the cookie:
number of bismuth atoms = cookie diameter / bismuth atom diameter
number of bismuth atoms = 44 × 10⁹ / 320 = 0.1375 × 10⁹ atoms = 1.375 × 10⁸ atoms
And now to respect the answer format requested by the problem:
1.375 × 10⁸ = 1.375e+8 ≈ 1.4e+8
The concentration of [Sn⁺²] will be calculated by first calculating the moles of SnCl₂ added as these moles will give us the moles of [Sn⁺²] ion.
Moles of SnCl₂ = molarity X volume = 0.04 X 2.60 = 0.104 milli moles [as volume is in mL]
The moles of [Sn⁺² = 0.104 mmol
the total volume in solution = volume due to MO + volume due to SnCl₂ + volume due to HCl + volume due to NaCl
Total volume = 8+2.60+5.43+3.73= 19.76 mL
Concentration = moles / volume
concentration [Sn⁺²] = 0.104mmol / 19.76 mL = 0.0053 mol / L
Answer:
9.86*10^(-3) g
Explanation:
PbSO4 ----> Pb^(2+) + SO4^(2-)
s s
Ksp = s²
s =√Ksp = √(1.8*10^-8) = 1.3*10^(-4) mol/L
The molar solubility PbSO4 = 1.3*10^(-4) mol/L.
2.50 *10^2 mL *1L/10³mL =0.250L
1.3*10^(-4)mol/L *0.250L*303.3 g/mol = 9.86*10^(-3) g