2y - 3x = 4
2y = 3x + 4
y = 3/2*x + 2
y = kx + b ==>
k = 3/2 = 1,5
Answer:
This is very detailed as I wish to make some principles about fractions clear.
3
5
12
Explanation:
This question boils down to
3
2
3
−
1
4
A fractions structure is that of:
count
size indicator of what you are counting
→
numerator
denominator
You can not directly add or subtract the counts (numerators) unless the size indicators (denominators) are the same.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
3
2
3
Write as
3
+
2
3
Multiply by 1 and you do not change the value. However, 1 comes in many forms so you can change the way something looks without changing its true value
[
3
×
1
]
+
2
3
[
3
×
3
3
]
+
2
3
9
3
+
2
3
=
11
3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Putting it all together
3
2
3
−
1
4
→
11
3
−
1
4
But the size indicators are not the same. I chose to make them become 12
11
3
−
1
4
→
[
11
3
×
1
]
−
[
1
4
×
1
]
→
[
11
3
×
4
4
]
−
[
1
4
×
3
3
]
→
44
12
−
3
12
Now we may subtract the counts
→
44
−
3
12
=
41
12
But this is the same as
12
12
+
12
12
+
12
12
+
5
12
=
1
2
+
2
1
2
+
2
1
2
+
5
12
=
3
5
12
Step-by-step explanation:
Answer:
1)(8+18w)
2) -24d-20
3)6w-16
4) correct
5)-10d+2
Step-by-step explanation:
Answer:
-1 1/3 as a mixed number (if they ask for it in simplest form, choose this one)
-4/3 as an improper fraction
Step-by-step explanation:
1. Keep, change, flip
4/5 x -5/3
2. Cross cancel the fives
4/1 x -1/3
3. Simplify
-4/3 or -1 1/3 (they're equivalent)
Answer:
A quadratic equation is an equation of the second degree, meaning it contains at least one term that is squared. The standard form is ax² + bx + c = 0 with a, b, and c being constants, or numerical coefficients, and x is an unknown variable. One absolute rule is that the first constant "a" cannot be a zero.
Step-by-step explanation: