Box C will have the greatest density.
All boxes have the same volume.
Explanation:
We calculate the density using the following formula:
density = mass / volume
density of Box A = 10 g / 20 cm³ = 0.5 g/cm³
density of Box B = 30 g / 20 cm³ = 1.5 g/cm³
density of Box C = 170 g / 20 cm³ = 8.5 g/cm³
Box C will have the greatest density.
All boxes have the same volume.
Learn more about:
density
brainly.com/question/952755
#learnwithBrainly
<u>Answer:</u>
<u>For a:</u> The balanced equation is 
<u>For c:</u> The balanced equation is 
<u>Explanation:</u>
A balanced chemical equation is one where all the individual atoms are equal on both sides of the reaction. It follows the law of conservation of mass.
The given unbalanced equation follows:

To balance the equation, we must balance the atoms by adding 2 infront of both
and
and 3 in front of 
For the balanced chemical equation:

The given balanced equation follows:

The given equation is already balanced.
The given unbalanced equation follows:

To balance the equation, we must balance the atoms by adding 2 infront of 
For the balanced chemical equation:
The given balanced equation follows:

The given equation is already balanced.
Answer:
For many solids dissolved in liquid water, the solubility increases with temperature. The increase in kinetic energy that comes with higher temperatures allows the solvent molecules to more effectively break apart the solute molecules that are held together by intermolecular attractions.
Explanation:
Answer:
cornea, pupil, lens, vitreous humor
The chemical reaction that the situation demonstrates would be a double replacement reaction.
In double replacement reactions, the two reactants participating in the reaction are similarly built in terms of their chemical bonds and they exchange ions to form the products of the reaction. Two products are also formed from the two reactants.
It is as opposed to single replacement reactions in which the two reactants are not similar bond-wise. One of the reactants replaces or displaces one of the ions in another reactant.
In this case, the situation can be represented as follows:
Amanda-Janice + Deja-Eden ----> Amanda-Eden + Deja-Janice
Thus, it is a form of double replacement reaction.
More on double replacement reactions can be found here: brainly.com/question/392491?referrer=searchResults