<u>Answer:</u> The average atomic mass of copper is 63.55 amu.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
- <u>For
isotope:</u>
Mass of
isotope = 62.94 amu
Percentage abundance of
= 69.17 %
Fractional abundance of
isotope = 0.6917
- <u>For
isotope:</u>
Mass of
isotope = 64.93 amu
Percentage abundance of
= 30.83 %
Fractional abundance of
isotope = 0.3083
Putting values in equation 1, we get:
![\text{Average atomic mass of Copper}=[(62.94\times 0.6917)+(64.93\times 0.3083)]\\\\\text{Average atomic mass of copper}=63.55amu](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20atomic%20mass%20of%20Copper%7D%3D%5B%2862.94%5Ctimes%200.6917%29%2B%2864.93%5Ctimes%200.3083%29%5D%5C%5C%5C%5C%5Ctext%7BAverage%20atomic%20mass%20of%20copper%7D%3D63.55amu)
Hence, the average atomic mass of copper is 63.55 amu.
When we have the balanced reaction equation is:
H2(g) + CO2(g) ↔ H2O(g) + CO (g)
a) first, to calculate ΔG° for the reaction:
we will use this formula:
ΔG° = -RT㏑Kp
when R is R- rydberg constant = 8.314J/mol.K
and T is the temperature in Kelvin = 2000 K
and Kp = 4.4
so, by substitution:
ΔG° = - 8.314 *2000 *㏑4.4
= - 24624 J/mol = - 24.6 KJ/mol
b) to calculate ΔG so, we will use this formula:
ΔG = ΔG° + RT㏑Qp
So we need first, to get Qp from the reaction equation:
when Qp = P products / P reactants
= PH2O*PCO / PH2 * PCO2
= (0.66 atm * 1.2 atm) / (0.25 * 0.78)
= 4.1
so by substitution:
ΔG = -24624 + 8.314*2000*㏑4.1
= -1162 J/mol = - 1.16 KJ/mol